Open-CyKG is a framework that is constructed using an attention-based neural Open Information Extraction (OIE) model to extract valuable cyber threat information from unstructured Advanced Persistent Threat (APT) reports. More specifically, we first identify relevant entities by developing a neural cybersecurity Named Entity Recognizer (NER) that aids in labeling relation triples generated by the OIE model. Afterwards, the extracted structured data is canonicalized to build the KG by employing fusion techniques using word embeddings.
For dataset files please refer to the appropiate refrence in the paper.
To utlize CRF in NER model using Keras; plase make sure to:
-- Use tensorFlow version and Keras version:
-- In tensorflow_backend.py and Optimizer.py write down those 2 liness ---> then restart runtime
```
import tensorflow.compat.v1 as tf
tf.disable_v2_behavior()
```
For more details on the how the exact process was carried out and the final hyper-parameters used; please refer to Open-CyKG paper.
Please cite Open-CyKG if you use any of this material in your work.
I. Sarhan and M. Spruit, Open-CyKG: An Open Cyber Threat Intelligence Knowledge Graph, Knowledge-Based Systems (2021), doi: https://doi.org/10.1016/j.knosys.2021.107524.
@article{SARHAN2021107524,
title = {Open-CyKG: An Open Cyber Threat Intelligence Knowledge Graph},
journal = {Knowledge-Based Systems},
volume = {233},
pages = {107524},
year = {2021},
issn = {0950-7051},
doi = {https://doi.org/10.1016/j.knosys.2021.107524},
url = {https://www.sciencedirect.com/science/article/pii/S0950705121007863},
author = {Injy Sarhan and Marco Spruit},
keywords = {Cyber Threat Intelligence, Knowledge Graph, Named Entity Recognition, Open Information Extraction, Attention network},
abstract = {Instant analysis of cybersecurity reports is a fundamental challenge for security experts as an immeasurable amount of cyber information is generated on a daily basis, which necessitates automated information extraction tools to facilitate querying and retrieval of data. Hence, we present Open-CyKG: an Open Cyber Threat Intelligence (CTI) Knowledge Graph (KG) framework that is constructed using an attention-based neural Open Information Extraction (OIE) model to extract valuable cyber threat information from unstructured Advanced Persistent Threat (APT) reports. More specifically, we first identify relevant entities by developing a neural cybersecurity Named Entity Recognizer (NER) that aids in labeling relation triples generated by the OIE model. Afterwards, the extracted structured data is canonicalized to build the KG by employing fusion techniques using word embeddings. As a result, security professionals can execute queries to retrieve valuable information from the Open-CyKG framework. Experimental results demonstrate that our proposed components that build up Open-CyKG outperform state-of-the-art models.11Our implementation of Open-CyKG is publicly available at https://github.com/IS5882/Open-CyKG.}
}
Stanovsky, Gabriel, et al. "Supervised open information extraction." Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long Papers). 2018.
Vashishth, Shikhar, Prince Jain, and Partha Talukdar. "Cesi: Canonicalizing open knowledge bases using embeddings and side information." Proceedings of the 2018 World Wide Web Conference. 2018.
.Please cite the appropriate reference(s) in your work