ITensor / ITensorNetworks.jl

A package with general tools for working with higher-dimensional tensor networks based on ITensor.
MIT License
61 stars 13 forks source link

[!WARNING] This is a pre-release software. There are no guarantees that functionality won't break from version to version, though we will try our best to indicate breaking changes following semantic versioning (semver) by bumping the minor version of the package. We are biasing heavily towards "moving fast and breaking things" during this stage of development, which will allow us to more quickly develop the package and bring it to a point where we have enough features and are happy enough with the external interface to officially release it for general public use.

In short, use this package with caution, and don't expect the interface to be stable or for us to clearly announce parts of the code we are changing.

ITensorNetworks

A package to provide general network data structures and tools to use with ITensors.jl.

Installation

You can install this package through the Julia package manager:

julia> ] add ITensorNetworks

Examples

Here are is an example of making a tensor network on a chain graph (a tensor train or matrix product state):

julia> using Graphs: neighbors, path_graph

julia> using ITensorNetworks: ITensorNetwork

julia> tn = ITensorNetwork(path_graph(4); link_space=2)
ITensorNetworks.ITensorNetwork{Int64} with 4 vertices:
4-element NamedGraphs.OrderedDictionaries.OrderedIndices{Int64}
 1
 2
 3
 4

and 3 edge(s):
1 => 2
2 => 3
3 => 4

with vertex data:
4-element Dictionaries.Dictionary{Int64, Any}
 1 │ ((dim=2|id=664|"1,2"),)
 2 │ ((dim=2|id=664|"1,2"), (dim=2|id=561|"2,3"))
 3 │ ((dim=2|id=561|"2,3"), (dim=2|id=47|"3,4"))
 4 │ ((dim=2|id=47|"3,4"),)

julia> tn[1]
ITensor ord=1 (dim=2|id=664|"1,2")
NDTensors.EmptyStorage{NDTensors.EmptyNumber, NDTensors.Dense{NDTensors.EmptyNumber, Vector{NDTensors.EmptyNumber}}}

julia> tn[2]
ITensor ord=2 (dim=2|id=664|"1,2") (dim=2|id=561|"2,3")
NDTensors.EmptyStorage{NDTensors.EmptyNumber, NDTensors.Dense{NDTensors.EmptyNumber, Vector{NDTensors.EmptyNumber}}}

julia> neighbors(tn, 1)
1-element Vector{Int64}:
 2

julia> neighbors(tn, 2)
2-element Vector{Int64}:
 1
 3

julia> neighbors(tn, 3)
2-element Vector{Int64}:
 2
 4

julia> neighbors(tn, 4)
1-element Vector{Int64}:
 3

and here is a similar example for making a tensor network on a grid (a tensor product state or project entangled pair state (PEPS)):

julia> using NamedGraphs.GraphsExtensions: subgraph

julia> using NamedGraphs.NamedGraphGenerators: named_grid

julia> tn = ITensorNetwork(named_grid((2, 2)); link_space=2)
ITensorNetworks.ITensorNetwork{Tuple{Int64, Int64}} with 4 vertices:
4-element NamedGraphs.OrderedDictionaries.OrderedIndices{Tuple{Int64, Int64}}
 (1, 1)
 (2, 1)
 (1, 2)
 (2, 2)

and 4 edge(s):
(1, 1) => (2, 1)
(1, 1) => (1, 2)
(2, 1) => (2, 2)
(1, 2) => (2, 2)

with vertex data:
4-element Dictionaries.Dictionary{Tuple{Int64, Int64}, Any}
 (1, 1) │ ((dim=2|id=68|"1×1,2×1"), (dim=2|id=516|"1×1,1×2"))
 (2, 1) │ ((dim=2|id=68|"1×1,2×1"), (dim=2|id=538|"2×1,2×2"))
 (1, 2) │ ((dim=2|id=516|"1×1,1×2"), (dim=2|id=278|"1×2,2×2"))
 (2, 2) │ ((dim=2|id=538|"2×1,2×2"), (dim=2|id=278|"1×2,2×2"))

julia> tn[1, 1]
ITensor ord=2 (dim=2|id=68|"1×1,2×1") (dim=2|id=516|"1×1,1×2")
NDTensors.EmptyStorage{NDTensors.EmptyNumber, NDTensors.Dense{NDTensors.EmptyNumber, Vector{NDTensors.EmptyNumber}}}

julia> neighbors(tn, (1, 1))
2-element Vector{Tuple{Int64, Int64}}:
 (2, 1)
 (1, 2)

julia> neighbors(tn, (1, 2))
2-element Vector{Tuple{Int64, Int64}}:
 (1, 1)
 (2, 2)

julia> tn_1 = subgraph(v -> v[1] == 1, tn)
ITensorNetworks.ITensorNetwork{Tuple{Int64, Int64}} with 2 vertices:
2-element NamedGraphs.OrderedDictionaries.OrderedIndices{Tuple{Int64, Int64}}
 (1, 1)
 (1, 2)

and 1 edge(s):
(1, 1) => (1, 2)

with vertex data:
2-element Dictionaries.Dictionary{Tuple{Int64, Int64}, Any}
 (1, 1) │ ((dim=2|id=68|"1×1,2×1"), (dim=2|id=516|"1×1,1×2"))
 (1, 2) │ ((dim=2|id=516|"1×1,1×2"), (dim=2|id=278|"1×2,2×2"))

julia> tn_2 = subgraph(v -> v[1] == 2, tn)
ITensorNetworks.ITensorNetwork{Tuple{Int64, Int64}} with 2 vertices:
2-element NamedGraphs.OrderedDictionaries.OrderedIndices{Tuple{Int64, Int64}}
 (2, 1)
 (2, 2)

and 1 edge(s):
(2, 1) => (2, 2)

with vertex data:
2-element Dictionaries.Dictionary{Tuple{Int64, Int64}, Any}
 (2, 1) │ ((dim=2|id=68|"1×1,2×1"), (dim=2|id=538|"2×1,2×2"))
 (2, 2) │ ((dim=2|id=538|"2×1,2×2"), (dim=2|id=278|"1×2,2×2"))

Networks can also be merged/unioned:

julia> using ITensors: prime

julia> using ITensorNetworks: ⊗, contract, contraction_sequence, siteinds

julia> using ITensorUnicodePlots: @visualize

julia> s = siteinds("S=1/2", named_grid(3))
ITensorNetworks.IndsNetwork{Int64, ITensors.Index} with 3 vertices:
3-element NamedGraphs.OrderedDictionaries.OrderedIndices{Int64}
 1
 2
 3

and 2 edge(s):
1 => 2
2 => 3

with vertex data:
3-element Dictionaries.Dictionary{Int64, Vector{ITensors.Index}}
 1 │ ITensors.Index[(dim=2|id=549|"S=1/2,Site,n=1")]
 2 │ ITensors.Index[(dim=2|id=718|"S=1/2,Site,n=2")]
 3 │ ITensors.Index[(dim=2|id=254|"S=1/2,Site,n=3")]

and edge data:
0-element Dictionaries.Dictionary{NamedGraphs.NamedEdge{Int64}, Vector{ITensors.Index}}

julia> tn1 = ITensorNetwork(s; link_space=2)
ITensorNetworks.ITensorNetwork{Int64} with 3 vertices:
3-element NamedGraphs.OrderedDictionaries.OrderedIndices{Int64}
 1
 2
 3

and 2 edge(s):
1 => 2
2 => 3

with vertex data:
3-element Dictionaries.Dictionary{Int64, Any}
 1 │ ((dim=2|id=549|"S=1/2,Site,n=1"), (dim=2|id=149|"1,2"))
 2 │ ((dim=2|id=718|"S=1/2,Site,n=2"), (dim=2|id=149|"1,2"), (dim=2|id=113|"2,3…
 3 │ ((dim=2|id=254|"S=1/2,Site,n=3"), (dim=2|id=113|"2,3"))

julia> tn2 = ITensorNetwork(s; link_space=2)
ITensorNetworks.ITensorNetwork{Int64} with 3 vertices:
3-element NamedGraphs.OrderedDictionaries.OrderedIndices{Int64}
 1
 2
 3

and 2 edge(s):
1 => 2
2 => 3

with vertex data:
3-element Dictionaries.Dictionary{Int64, Any}
 1 │ ((dim=2|id=549|"S=1/2,Site,n=1"), (dim=2|id=407|"1,2"))
 2 │ ((dim=2|id=718|"S=1/2,Site,n=2"), (dim=2|id=407|"1,2"), (dim=2|id=205|"2,3…
 3 │ ((dim=2|id=254|"S=1/2,Site,n=3"), (dim=2|id=205|"2,3"))

julia> @visualize tn1;
    ⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀ 
    ⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀ 
    ⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀ 
    ⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀ 
    ⠀⠀⠀tn11⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀ 
    ⠀⠀⠀⠀⠀⡇⠉⠢⢄⡀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀ 
    ⠀⠀⠀⠀⠀⡇⠀⠀⠀⠈⠒⠤⡀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀ 
    ⠀⠀⠀⠀⠀⡇⠀⠀⠀⠀⠀⠀⠈⠑⠢2⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀ 
    ⠀⠀⠀⠀⠀⡇⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠉⠢⢄⡀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀ 
    ⠀⠀⠀⠀⠀⡇⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠈⠒⠤⡀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀ 
    ⠀⠀⠀⠀⠀2⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠈⠑⠢⣀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀ 
    ⠀⠀⠀⠀⠀⡇⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀tn12⢄⡀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀ 
    ⠀⠀⠀⠀⠀⡇⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⡇⠀⠀⠈⠒⠤⡀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀ 
    ⠀⠀⠀⠀⠀⡇⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⡇⠀⠀⠀⠀⠀⠈⠑⠢⣀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀ 
    ⠀⠀⠀⠀⠀⡇⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⡇⠀⠀⠀⠀⠀⠀⠀⠀⠀2⠢⢄⡀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀ 
    ⠀⠀⠀⠀⠀⡇⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⡇⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠈⠒⠤⡀⠀⠀⠀⠀⠀⠀⠀⠀⠀ 
    ⠀⠀⠀⠀⠀⠃⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀2⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠈⠑⠢⣀⠀⠀⠀⠀⠀⠀ 
    ⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⡇⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀tn13⠀⠀⠀⠀ 
    ⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⡇⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢸⠀⠀⠀⠀⠀ 
    ⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⡇⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢸⠀⠀⠀⠀⠀ 
    ⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⡇⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢸⠀⠀⠀⠀⠀ 
    ⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀ 

julia> @visualize tn2;
    ⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀ 
    ⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀ 
    ⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀ 
    ⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀ 
    ⠀⠀⠀tn21⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀ 
    ⠀⠀⠀⠀⠀⡇⠉⠢⢄⡀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀ 
    ⠀⠀⠀⠀⠀⡇⠀⠀⠀⠈⠒⠤⡀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀ 
    ⠀⠀⠀⠀⠀⡇⠀⠀⠀⠀⠀⠀⠈⠑⠢2⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀ 
    ⠀⠀⠀⠀⠀⡇⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠉⠢⢄⡀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀ 
    ⠀⠀⠀⠀⠀⡇⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠈⠒⠤⡀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀ 
    ⠀⠀⠀⠀⠀2⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠈⠑⠢⣀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀ 
    ⠀⠀⠀⠀⠀⡇⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀tn22⢄⡀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀ 
    ⠀⠀⠀⠀⠀⡇⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⡇⠀⠀⠈⠒⠤⡀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀ 
    ⠀⠀⠀⠀⠀⡇⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⡇⠀⠀⠀⠀⠀⠈⠑⠢⣀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀ 
    ⠀⠀⠀⠀⠀⡇⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⡇⠀⠀⠀⠀⠀⠀⠀⠀⠀2⠢⢄⡀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀ 
    ⠀⠀⠀⠀⠀⡇⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⡇⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠈⠒⠤⡀⠀⠀⠀⠀⠀⠀⠀⠀⠀ 
    ⠀⠀⠀⠀⠀⠃⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀2⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠈⠑⠢⣀⠀⠀⠀⠀⠀⠀ 
    ⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⡇⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀tn23⠀⠀⠀⠀ 
    ⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⡇⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢸⠀⠀⠀⠀⠀ 
    ⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⡇⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢸⠀⠀⠀⠀⠀ 
    ⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⡇⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢸⠀⠀⠀⠀⠀ 
    ⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀ 

julia> Z = prime(tn1; sites=[]) ⊗ tn2;

julia> @visualize Z;
    ⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀ 
    ⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀ 
    ⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀ 
    ⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀ 
    ⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢀⣀Z(3, 1)⠀⠀ 
    ⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀Z(3, 2)⠤⠔⠒⠒⠒⠒2⠉⠉⠉⠉⠁⠀⣀⠔⠉⠀⠀⠀⠀⠀⠀ 
    ⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢸⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⣀⠔⠊⠀⠀⠀⠀⠀⠀⠀⠀⠀ 
    ⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⡸⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀(2)'⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀ 
    ⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⡇⠀⠀⠀⠀⠀⠀⠀⠀⢀⠤⠊⠁⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀ 
    ⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢀2⠀⠀⠀Z(2, 1)⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀ 
    ⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢀⣀⡠⢼⠔⠒⠊2⠥⠊⠁⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀ 
    ⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⣀⣀⡠⠤(2)'⠁⠀⠀⡜⢀⠤⠊⠁⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀ 
    ⠀⠀Z(1, 1)⠒⠒⠉⠉⠀⠀⠀⠀⠀⠀⠀⠀Z(2, 2)⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀ 
    ⠀⠀⠀⠀⠀⠑⡄⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢀⡠⠒⠁⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀ 
    ⠀⠀⠀⠀⠀⠀⠘⢄⠀⠀⠀⠀⠀⠀⠀⠀⠀2⠒⠁⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀ 
    ⠀⠀⠀⠀⠀⠀⠀2⢆⠀⠀⠀⠀⠀⡠⠔⠉⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀ 
    ⠀⠀⠀⠀⠀⠀⠀⠀⠀⢣⠀⡠⠔⠉⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀ 
    ⠀⠀⠀⠀⠀⠀⠀Z(1, 2)⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀ 
    ⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀ 
    ⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀ 
    ⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀ 
    ⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀ 

julia> contraction_sequence(Z)
2-element Vector{Vector}:
 NamedGraphs.Keys.Key{Tuple{Int64, Int64}}[Key((1, 1)), Key((1, 2))]
 Any[Key((2, 1)), Any[Key((2, 2)), NamedGraphs.Keys.Key{Tuple{Int64, Int64}}[Key((3, 1)), Key((3, 2))]]]

julia> Z̃ = contract(Z, (1, 1) => (2, 1));

julia> @visualize Z̃;
    ⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀ 
    ⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀ 
    ⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀ 
    ⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀ 
    ⠀⠀⠀⠀⠀⠀⠀⠀⠀Z̃(3, 2)⣀⣀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀ 
    ⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢀⠜⠀⠀⠀⠀⠀⠀⠉⠉⠉⠉⠉⠑⠒⠒⠒⠒⠢2⠤⠤⠤⠤⣀⣀⣀⣀⣀⡀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀ 
    ⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢀⠎⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠈⠉Z̃(3, 1)⠀⠀ 
    ⠀⠀⠀⠀⠀⠀⠀⠀⠀⡠⠃⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⡠⠊⠀⠀⠀⠀⠀⠀ 
    ⠀⠀⠀⠀⠀⠀⠀⠀⡔2⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢠⠊⠀⠀⠀⠀⠀⠀⠀⠀ 
    ⠀⠀⠀⠀⠀⠀⢀⠜⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀(2)'⠀⠀⠀⠀⠀⠀⠀⠀⠀ 
    ⠀⠀⠀⠀⠀⢠⠊⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⡰⠁⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀ 
    ⠀Z̃(2, 2)⠤⠤⠤⠤⢄⣀⣀⣀⣀⣀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⡠⠊⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀ 
    ⠀⠀⠀⠀⠀⠀⠣⡀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠉2⠉⠉⠉⠒⠒⠒⠒⠒⠢⠤Z̃(2, 1)⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀ 
    ⠀⠀⠀⠀⠀⠀⠀⠑⡄⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢀⣀⠤⠒⠊⠁⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀ 
    ⠀⠀⠀⠀⠀⠀⠀⠀2⢄⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢀⡠⠤⠒⠉⠁⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀ 
    ⠀⠀⠀⠀⠀⠀⠀⠀⠀⠈⢢⠀⠀⠀⠀⠀⠀⠀⠀⣀⡠⠤⠒⠉2⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀ 
    ⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠱⡀⠀⣀⡠⠔⠒⠉⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀ 
    ⠀⠀⠀⠀⠀⠀⠀⠀Z̃(1, 2)⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀ 
    ⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀ 
    ⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀ 
    ⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀ 
    ⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀ 

Generating this README

This file was generated with Weave.jl with the following commands:

using ITensorNetworks: ITensorNetworks
using Weave: Weave
Weave.weave(
  joinpath(pkgdir(ITensorNetworks), "examples", "README.jl");
  doctype="github",
  out_path=pkgdir(ITensorNetworks),
)