Train for OpenMMLab detection models.
We strongly recommend using a virtual environment. If you're not sure where to start, we offer a tutorial here.
pip install ikomia
from ikomia.dataprocess.workflow import Workflow
# Init your workflow
wf = Workflow()
# Add dataset loader
coco = wf.add_task(name="dataset_coco")
coco.set_parameters({
"json_file": "path/to/annotation/file.json",
"image_folder": "path/to/image/folder",
"task": "detection",
})
# Add train algorithm
train = wf.add_task(name="train_mmlab_detection", auto_connect=True)
# Launch your training on your data
wf.run()
Ikomia Studio offers a friendly UI with the same features as the API.
If you haven't started using Ikomia Studio yet, download and install it from this page.
For additional guidance on getting started with Ikomia Studio, check out this blog post.
Parameters should be in strings format when added to the dictionary.
from ikomia.dataprocess.workflow import Workflow
# Init your workflow
wf = Workflow()
# Add dataset loader
coco = wf.add_task(name="dataset_coco")
coco.set_parameters({
"json_file": "path/to/annotation/file.json",
"image_folder": "path/to/image/folder",
"task": "detection",
})
# Add train algorithm
train = wf.add_task(name="train_mmlab_detection", auto_connect=True)
train.set_parameters({
"epochs": "5",
"batch_size": "2",
"dataset_split_ratio": "90",
"eval_period": "1"
})
# Launch your training on your data
wf.run()