InstituteforDiseaseModeling / laser

Light Agent Spatial modeling for ERadication
MIT License
2 stars 5 forks source link

LASER logo

Schedule

First 30 Days (EOY 2023)

First 60 Days (January 31, 2024)

First 120 Days (February 29, 2024)

Problem Space

The problem is inherently an issue of heterogeneity. Spatial decomposition is the easiest consideration, but not sufficient - a model of N "independent" but identical communities is generally not useful.

Spatial connectivity and the associated latencies in transmission address one dimension of heterogeneity: how "close" is a given community to a potential source of imported contagion (exogenous to the model "world", locally endogenous, e.g., an adjacent community, endogenous but at a remove - rare transmission or multi-stop chain of transmission).

Community size in a spatial model is also a consideration - what is the configuration and connectivity of sub-CCS nodes to nodes at or above CCS for the given disease?

We need configurable characteristics of the individual communities which can vary, along with their interconnectedness, to capture additional heterogeneity.

What is the modeling of the individual communities? "Light-Agent" seems to limit us to an ABM, but we should consider cohorts of epidemiologically similar populations (polio >5, HIV <15, TB latents, etc.) as well as stochastic compartmental models.

Are the individual communities well-mixed or should we also provide for explicit networks at the local level?

Technology

Other

Notes

Superficial simplicity isn’t the goal of design. Some things are, by nature, complex. In such cases, you should aim for clarity rather than “simplicity.” Users will be better served if you strive to make complex systems more understandable and learnable than simply simple.