The Pytorch implementation of paper "Refining BERT Embeddings for Document Hashing via Mutual Information Maximization" (EMNLP 2021). The code of baselines is available at this link.
We implement our model in HugginFace AIP. Please download the BERT-based model from this link and put it at ./model/bert-base-uncased/
.
# Run with the DBpedia dataset
python main.py dbpedia32 ./data/dbpedia --train --seed 32236 --batch_size 512 --epochs 100 --lr 0.001 --encode_length 32 --cuda --max_length 50 --distance_metric hamming --num_retrieve 100 --num_bad_epochs 6 --clip 10.0 --alpha 0.1 --beta 0.4 --conv_out_dim 256
To reproduce the results reported in the paper, please refer to the run.sh
for detailed running comments.