This repository contains code for the reprsentation proposed in Graph Hawkes Neural Network for Forecasting on Temporal Knowledge Graphs paper.
$ conda create -n ghnn python=3.6 anaconda
$ source activate ghnn
After installing the requirements, run the following command to preprocess datasets.:
$ python3 data/DATA_NAME/get_history.py
$ python3 data/DATA_NAME/get_history_tpre_appro.py
To train and test the model.
$ python3 co-train.py -d DATA_NAME
Only evaluating the model.
$ python3 co-train.py -d DATA_NAME --only_eva true --eva_dir MODEL_DIR
If you use the codes, please cite the following paper:
@inproceedings{han2020graph,
title={Graph Hawkes Neural Network for Forecasting on Temporal Knowledge Graphs},
author={Han, Zhen and Ma, Yunpu and Wang, Yuyi and Günnemann, Stephan and Tresp, Volker},
booktitle={AKBC},
year={2020}
}
Copyright (c) 2020-present, Siemens AG. All rights reserved. This source code is licensed under the license found in the LICENSE file in the root directory of this source tree.