Open Jerboa-app opened 1 year ago
Yoshida computes 4 intermediate steps
e.g
$x{i}^{1} = x{i}+c{1}v{i} dt$ $v{i}^{1} = v{i}+d{1}a(x{i}^{1})dt$
then
$x{i}^{2} = x{i}^{1}+c{2}v{i}^1 dt$ $v{i}^{2} = v{i}^1+d{2}a(x{i}^{2})dt$ ...
The 4 computations of $a(x_{i}^{n})$ are expensive
What if we write $\partial{t} a(x{i}) \approx \frac{[f(dt)-1]a(x_{i}^{1})}{dt}$, so that
$a(x{i}^{n}) \approx f(dt)^n a(x{i}^{1})$
We can then have linear or non-linear assumptions like
$a(x{i}^{n}) \sim dt^n a(x{i}^{1})$ or $a(x{i}^{n}) \sim e^{-ndt}a(x{i}^1)$
Explore possibility for higher order integration and timestep subsampling