JuDFTteam / best-of-atomistic-machine-learning

πŸ† A ranked list of awesome atomistic machine learning projects βš›οΈπŸ§¬πŸ’Ž.
Creative Commons Attribution Share Alike 4.0 International
401 stars 38 forks source link
ai4science atomistic-machine-learning awesome-list best-of-list computational-chemistry computational-materials-science condensed-matter density-functional-theory drug-discovery electronic-structure interatomic-potentials materials-discovery materials-informatics molecular-dynamics quantum-chemistry scientific-computing scientific-machine-learning surrogate-models

Best of Atomistic Machine Learning βš›οΈπŸ§¬πŸ’Ž

πŸ†  A ranked list of awesome atomistic machine learning (AML) projects. Updated regularly.

DOI

This curated list contains 430 awesome open-source projects with a total of 190K stars grouped into 22 categories. All projects are ranked by a project-quality score, which is calculated based on various metrics automatically collected from GitHub and different package managers. If you like to add or update projects, feel free to open an issue, submit a pull request, or directly edit the projects.yaml.

The current focus of this list is more on simulation data rather than experimental data, and more on materials rather than drug design. Nevertheless, contributions from other fields are warmly welcome!

How to cite. See the button "Cite this repository" on the right side-bar.

πŸ§™β€β™‚οΈ Discover other best-of lists or create your own.

Contents

Explanation


Active learning

Back to top

Projects that focus on enabling active learning, iterative learning schemes for atomistic ML.

FLARE (πŸ₯‡21 Β· ⭐ 290) - An open-source Python package for creating fast and accurate interatomic potentials. MIT C++ ML-IAP - [GitHub](https://github.com/mir-group/flare) (πŸ‘¨β€πŸ’» 43 Β· πŸ”€ 70 Β· πŸ“₯ 8 Β· πŸ“¦ 12 Β· πŸ“‹ 220 - 16% open Β· ⏱️ 01.11.2024): ``` git clone https://github.com/mir-group/flare ```
IPSuite (πŸ₯ˆ16 Β· ⭐ 19) - A Python toolkit for FAIR development and deployment of machine-learned interatomic potentials. EPL-2.0 ML-IAP MD workflows HTC FAIR - [GitHub](https://github.com/zincware/IPSuite) (πŸ‘¨β€πŸ’» 8 Β· πŸ”€ 11 Β· πŸ“¦ 7 Β· πŸ“‹ 130 - 51% open Β· ⏱️ 19.09.2024): ``` git clone https://github.com/zincware/IPSuite ``` - [PyPi](https://pypi.org/project/ipsuite) (πŸ“₯ 290 / month Β· ⏱️ 08.08.2024): ``` pip install ipsuite ```
Finetuna (πŸ₯‰10 Β· ⭐ 46) - Active Learning for Machine Learning Potentials. MIT - [GitHub](https://github.com/ulissigroup/finetuna) (πŸ‘¨β€πŸ’» 11 Β· πŸ”€ 11 Β· πŸ“¦ 1 Β· πŸ“‹ 20 - 25% open Β· ⏱️ 15.05.2024): ``` git clone https://github.com/ulissigroup/finetuna ```
Show 3 hidden projects... - flare++ (πŸ₯ˆ13 Β· ⭐ 35 Β· πŸ’€) - A many-body extension of the FLARE code. MIT C++ ML-IAP - ACEHAL (πŸ₯‰5 Β· ⭐ 11 Β· πŸ’€) - Hyperactive Learning (HAL) Python interface for building Atomic Cluster Expansion potentials. Unlicensed Julia - ALEBREW (πŸ₯‰3 Β· ⭐ 13) - Official repository for the paper Uncertainty-biased molecular dynamics for learning uniformly accurate interatomic.. Custom ML-IAP MD


Community resources

Back to top

Projects that collect atomistic ML resources or foster communication within community.

πŸ”— AI for Science Map - Interactive mindmap of the AI4Science research field, including atomistic machine learning, including papers,..

πŸ”— Atomic Cluster Expansion - Atomic Cluster Expansion (ACE) community homepage.

πŸ”— CrystaLLM - Generate a crystal structure from a composition. language-models generative pretrained transformer

πŸ”— GAP-ML.org community homepage ML-IAP

πŸ”— matsci.org - A community forum for the discussion of anything materials science, with a focus on computational materials science..

πŸ”— Matter Modeling Stack Exchange - Machine Learning - Forum StackExchange, site Matter Modeling, ML-tagged questions.

πŸ”— ACE / GRACE support - Support forum for the Atomic Cluster Expansion (ACE) and extensions.

Best-of Machine Learning with Python (πŸ₯‡23 Β· ⭐ 18K) - A ranked list of awesome machine learning Python libraries. Updated weekly. CC-BY-4.0 general-ml Python - [GitHub](https://github.com/ml-tooling/best-of-ml-python) (πŸ‘¨β€πŸ’» 49 Β· πŸ”€ 2.4K Β· πŸ“‹ 61 - 44% open Β· ⏱️ 21.11.2024): ``` git clone https://github.com/ml-tooling/best-of-ml-python ```
OpenML (πŸ₯‡20 Β· ⭐ 670) - Open Machine Learning. BSD-3 datasets - [GitHub](https://github.com/openml/OpenML) (πŸ‘¨β€πŸ’» 35 Β· πŸ”€ 90 Β· πŸ“‹ 930 - 39% open Β· ⏱️ 15.11.2024): ``` git clone https://github.com/openml/OpenML ```
MatBench Discovery (πŸ₯‡19 Β· ⭐ 110) - An evaluation framework for machine learning models simulating high-throughput materials discovery. MIT datasets benchmarking model-repository - [GitHub](https://github.com/janosh/matbench-discovery) (πŸ‘¨β€πŸ’» 9 Β· πŸ”€ 17 Β· πŸ“¦ 4 Β· πŸ“‹ 40 - 10% open Β· ⏱️ 21.11.2024): ``` git clone https://github.com/janosh/matbench-discovery ``` - [PyPi](https://pypi.org/project/matbench-discovery) (πŸ“₯ 1.6K / month Β· ⏱️ 11.09.2024): ``` pip install matbench-discovery ```
Graph-based Deep Learning Literature (πŸ₯ˆ18 Β· ⭐ 4.8K) - links to conference publications in graph-based deep learning. MIT general-ml rep-learn - [GitHub](https://github.com/naganandy/graph-based-deep-learning-literature) (πŸ‘¨β€πŸ’» 12 Β· πŸ”€ 770 Β· ⏱️ 16.11.2024): ``` git clone https://github.com/naganandy/graph-based-deep-learning-literature ```
MatBench (πŸ₯ˆ17 Β· ⭐ 120 Β· πŸ’€) - Matbench: Benchmarks for materials science property prediction. MIT datasets benchmarking model-repository - [GitHub](https://github.com/materialsproject/matbench) (πŸ‘¨β€πŸ’» 25 Β· πŸ”€ 45 Β· πŸ“¦ 18 Β· πŸ“‹ 65 - 60% open Β· ⏱️ 20.01.2024): ``` git clone https://github.com/materialsproject/matbench ``` - [PyPi](https://pypi.org/project/matbench) (πŸ“₯ 440 / month Β· πŸ“¦ 2 Β· ⏱️ 27.07.2022): ``` pip install matbench ```
GT4SD - Generative Toolkit for Scientific Discovery (πŸ₯ˆ15 Β· ⭐ 340) - Gradio apps of generative models in GT4SD. MIT generative pretrained drug-discovery model-repository - [GitHub](https://github.com/GT4SD/gt4sd-core) (πŸ‘¨β€πŸ’» 20 Β· πŸ”€ 72 Β· πŸ“‹ 110 - 12% open Β· ⏱️ 12.09.2024): ``` git clone https://github.com/GT4SD/gt4sd-core ```
AI for Science Resources (πŸ₯ˆ13 Β· ⭐ 530) - List of resources for AI4Science research, including learning resources. GPL-3.0 license - [GitHub](https://github.com/divelab/AIRS) (πŸ‘¨β€πŸ’» 30 Β· πŸ”€ 61 Β· πŸ“‹ 18 - 11% open Β· ⏱️ 15.11.2024): ``` git clone https://github.com/divelab/AIRS ```
Neural-Network-Models-for-Chemistry (πŸ₯ˆ11 Β· ⭐ 91) - A collection of Nerual Network Models for chemistry. Unlicensed rep-learn - [GitHub](https://github.com/Eipgen/Neural-Network-Models-for-Chemistry) (πŸ‘¨β€πŸ’» 3 Β· πŸ”€ 14 Β· πŸ“‹ 2 - 50% open Β· ⏱️ 21.11.2024): ``` git clone https://github.com/Eipgen/Neural-Network-Models-for-Chemistry ```
GNoME Explorer (πŸ₯ˆ10 Β· ⭐ 890) - Graph Networks for Materials Exploration Database. Apache-2 datasets materials-discovery - [GitHub](https://github.com/google-deepmind/materials_discovery) (πŸ‘¨β€πŸ’» 2 Β· πŸ”€ 140 Β· πŸ“‹ 22 - 81% open Β· ⏱️ 19.11.2024): ``` git clone https://github.com/google-deepmind/materials_discovery ```
Awesome Materials Informatics (πŸ₯ˆ9 Β· ⭐ 390) - Curated list of known efforts in materials informatics, i.e. in modern materials science. Custom - [GitHub](https://github.com/tilde-lab/awesome-materials-informatics) (πŸ‘¨β€πŸ’» 19 Β· πŸ”€ 84 Β· ⏱️ 18.09.2024): ``` git clone https://github.com/tilde-lab/awesome-materials-informatics ```
Awesome Neural Geometry (πŸ₯‰8 Β· ⭐ 920) - A curated collection of resources and research related to the geometry of representations in the brain, deep networks,.. Unlicensed educational rep-learn - [GitHub](https://github.com/neurreps/awesome-neural-geometry) (πŸ‘¨β€πŸ’» 12 Β· πŸ”€ 57 Β· ⏱️ 25.09.2024): ``` git clone https://github.com/neurreps/awesome-neural-geometry ```
optimade.science (πŸ₯‰8 Β· ⭐ 8) - A sky-scanner Optimade browser-only GUI. MIT datasets - [GitHub](https://github.com/tilde-lab/optimade.science) (πŸ‘¨β€πŸ’» 8 Β· πŸ”€ 2 Β· πŸ“‹ 26 - 26% open Β· ⏱️ 10.06.2024): ``` git clone https://github.com/tilde-lab/optimade.science ```
Awesome-Graph-Generation (πŸ₯‰7 Β· ⭐ 290) - A curated list of up-to-date graph generation papers and resources. Unlicensed rep-learn - [GitHub](https://github.com/yuanqidu/awesome-graph-generation) (πŸ‘¨β€πŸ’» 4 Β· πŸ”€ 18 Β· ⏱️ 14.10.2024): ``` git clone https://github.com/yuanqidu/awesome-graph-generation ```
Awesome Neural SBI (πŸ₯‰7 Β· ⭐ 96) - Community-sourced list of papers and resources on neural simulation-based inference. MIT active-learning - [GitHub](https://github.com/smsharma/awesome-neural-sbi) (πŸ‘¨β€πŸ’» 3 Β· πŸ”€ 6 Β· πŸ“‹ 2 - 50% open Β· ⏱️ 17.06.2024): ``` git clone https://github.com/smsharma/awesome-neural-sbi ```
Awesome-Crystal-GNNs (πŸ₯‰7 Β· ⭐ 70) - This repository contains a collection of resources and papers on GNN Models on Crystal Solid State Materials. MIT - [GitHub](https://github.com/kdmsit/Awesome-Crystal-GNNs) (πŸ‘¨β€πŸ’» 2 Β· πŸ”€ 8 Β· ⏱️ 19.10.2024): ``` git clone https://github.com/kdmsit/Awesome-Crystal-GNNs ```
AI for Science paper collection (πŸ₯‰7 Β· ⭐ 66 Β· 🐣) - List the AI for Science papers accepted by top conferences. Apache-2 - [GitHub](https://github.com/sherrylixuecheng/AI_for_Science_paper_collection) (πŸ‘¨β€πŸ’» 5 Β· πŸ”€ 7 Β· ⏱️ 14.09.2024): ``` git clone https://github.com/sherrylixuecheng/AI_for_Science_paper_collection ```
The Collection of Database and Dataset Resources in Materials Science (πŸ₯‰6 Β· ⭐ 270) - A list of databases, datasets and books/handbooks where you can find materials properties for machine learning.. Unlicensed datasets - [GitHub](https://github.com/sedaoturak/data-resources-for-materials-science) (πŸ‘¨β€πŸ’» 2 Β· πŸ”€ 45 Β· πŸ“‹ 2 - 50% open Β· ⏱️ 07.06.2024): ``` git clone https://github.com/sedaoturak/data-resources-for-materials-science ```
Show 7 hidden projects... - MoLFormers UI (πŸ₯ˆ9 Β· ⭐ 270 Β· πŸ’€) - A family of foundation models trained on chemicals. Apache-2 transformer language-models pretrained drug-discovery - A Highly Opinionated List of Open-Source Materials Informatics Resources (πŸ₯‰7 Β· ⭐ 120 Β· πŸ’€) - A Highly Opinionated List of Open Source Materials Informatics Resources. MIT - MADICES Awesome Interoperability (πŸ₯‰7 Β· ⭐ 1) - Linked data interoperability resources of the Machine-actionable data interoperability for the chemical sciences.. MIT datasets - Geometric-GNNs (πŸ₯‰4 Β· ⭐ 93 Β· πŸ’€) - List of Geometric GNNs for 3D atomic systems. Unlicensed datasets educational rep-learn - Does this material exist? (πŸ₯‰4 Β· ⭐ 15 Β· πŸ’€) - Vote on whether you think predicted crystal structures could be synthesised. MIT for-fun materials-discovery - GitHub topic materials-informatics (πŸ₯‰1) - GitHub topic materials-informatics. Unlicensed - MateriApps (πŸ₯‰1) - A Portal Site of Materials Science Simulation. Unlicensed


Datasets

Back to top

Datasets, databases and trained models for atomistic ML.

πŸ”— Alexandria Materials Database - A database of millions of theoretical crystal structures (3D, 2D and 1D) discovered by machine learning accelerated..

πŸ”— Catalysis Hub - A web-platform for sharing data and software for computational catalysis research!.

πŸ”— Citrination Datasets - AI-Powered Materials Data Platform. Open Citrination has been decommissioned.

πŸ”— crystals.ai - Curated datasets for reproducible AI in materials science.

πŸ”— DeepChem Models - DeepChem models on HuggingFace. model-repository pretrained language-models

πŸ”— Graphs of Materials Project 20190401 - The dataset used to train the MEGNet interatomic potential. ML-IAP

πŸ”— HME21 Dataset - High-temperature multi-element 2021 dataset for the PreFerred Potential (PFP).. UIP

πŸ”— JARVIS-Leaderboard ( ⭐ 61) - A large scale benchmark of materials design methods: https://www.nature.com/articles/s41524-024-01259-w. model-repository benchmarking community-resource educational

πŸ”— Materials Project - Charge Densities - Materials Project has started offering charge density information available for download via their public API.

πŸ”— Materials Project Trajectory (MPtrj) Dataset - The dataset used to train the CHGNet universal potential. UIP

πŸ”— matterverse.ai - Database of yet-to-be-sythesized materials predicted using state-of-the-art machine learning algorithms.

πŸ”— MPF.2021.2.8 - The dataset used to train the M3GNet universal potential. UIP

πŸ”— NRELMatDB - Computational materials database with the specific focus on materials for renewable energy applications including, but..

πŸ”— Quantum-Machine.org Datasets - Collection of datasets, including QM7, QM9, etc. MD, DFT. Small organic molecules, mostly.

πŸ”— sGDML Datasets - MD17, MD22, DFT datasets.

πŸ”— MoleculeNet - A Benchmark for Molecular Machine Learning. benchmarking

πŸ”— ZINC15 - A free database of commercially-available compounds for virtual screening. ZINC contains over 230 million purchasable.. graph biomolecules

πŸ”— ZINC20 - A free database of commercially-available compounds for virtual screening. ZINC contains over 230 million purchasable.. graph biomolecules

OPTIMADE Python tools (πŸ₯‡27 Β· ⭐ 71) - Tools for implementing and consuming OPTIMADE APIs in Python. MIT - [GitHub](https://github.com/Materials-Consortia/optimade-python-tools) (πŸ‘¨β€πŸ’» 28 Β· πŸ”€ 44 Β· πŸ“¦ 61 Β· πŸ“‹ 460 - 23% open Β· ⏱️ 18.11.2024): ``` git clone https://github.com/Materials-Consortia/optimade-python-tools ``` - [PyPi](https://pypi.org/project/optimade) (πŸ“₯ 15K / month Β· πŸ“¦ 4 Β· ⏱️ 15.10.2024): ``` pip install optimade ``` - [Conda](https://anaconda.org/conda-forge/optimade) (πŸ“₯ 99K Β· ⏱️ 16.10.2024): ``` conda install -c conda-forge optimade ```
MPContribs (πŸ₯‡25 Β· ⭐ 36) - Platform for materials scientists to contribute and disseminate their materials data through Materials Project. MIT - [GitHub](https://github.com/materialsproject/MPContribs) (πŸ‘¨β€πŸ’» 25 Β· πŸ”€ 20 Β· πŸ“¦ 40 Β· πŸ“‹ 100 - 21% open Β· ⏱️ 18.11.2024): ``` git clone https://github.com/materialsproject/MPContribs ``` - [PyPi](https://pypi.org/project/mpcontribs-client) (πŸ“₯ 8.6K / month Β· πŸ“¦ 3 Β· ⏱️ 17.10.2024): ``` pip install mpcontribs-client ```
FAIR Chemistry datasets (πŸ₯‡24 Β· ⭐ 880) - Datasets OC20, OC22, etc. Formerly known as Open Catalyst Project. MIT catalysis - [GitHub](https://github.com/FAIR-Chem/fairchem) (πŸ‘¨β€πŸ’» 42 Β· πŸ”€ 250 Β· πŸ“‹ 240 - 12% open Β· ⏱️ 19.11.2024): ``` git clone https://github.com/FAIR-Chem/fairchem ``` - [PyPi](https://pypi.org/project/fairchem-core) (πŸ“₯ 3.4K / month Β· πŸ“¦ 1 Β· ⏱️ 14.09.2024): ``` pip install fairchem-core ```
Open Databases Integration for Materials Design (OPTIMADE) (πŸ₯ˆ18 Β· ⭐ 83) - Specification of a common REST API for access to materials databases. CC-BY-4.0 - [GitHub](https://github.com/Materials-Consortia/OPTIMADE) (πŸ‘¨β€πŸ’» 21 Β· πŸ”€ 35 Β· πŸ“‹ 240 - 28% open Β· ⏱️ 12.06.2024): ``` git clone https://github.com/Materials-Consortia/OPTIMADE ```
load-atoms (πŸ₯ˆ16 Β· ⭐ 38) - download and manipulate atomistic datasets. MIT data-structures - [GitHub](https://github.com/jla-gardner/load-atoms) (πŸ‘¨β€πŸ’» 3 Β· πŸ”€ 2 Β· πŸ“¦ 4 Β· πŸ“‹ 31 - 3% open Β· ⏱️ 16.10.2024): ``` git clone https://github.com/jla-gardner/load-atoms ``` - [PyPi](https://pypi.org/project/load-atoms) (πŸ“₯ 2.2K / month Β· ⏱️ 04.10.2024): ``` pip install load-atoms ```
QH9 (πŸ₯ˆ13 Β· ⭐ 530) - A Quantum Hamiltonian Prediction Benchmark. CC-BY-NC-SA-4.0 ML-DFT - [GitHub](https://github.com/divelab/AIRS) (πŸ‘¨β€πŸ’» 30 Β· πŸ”€ 61 Β· πŸ“‹ 18 - 11% open Β· ⏱️ 15.11.2024): ``` git clone https://github.com/divelab/AIRS ```
SPICE (πŸ₯ˆ11 Β· ⭐ 160) - A collection of QM data for training potential functions. MIT ML-IAP MD - [GitHub](https://github.com/openmm/spice-dataset) (πŸ‘¨β€πŸ’» 1 Β· πŸ”€ 9 Β· πŸ“₯ 270 Β· πŸ“‹ 68 - 25% open Β· ⏱️ 19.08.2024): ``` git clone https://github.com/openmm/spice-dataset ```
AIS Square (πŸ₯ˆ9 Β· ⭐ 12) - A collaborative and open-source platform for sharing AI for Science datasets, models, and workflows. Home of the.. LGPL-3.0 community-resource model-repository - [GitHub](https://github.com/deepmodeling/AIS-Square) (πŸ‘¨β€πŸ’» 8 Β· πŸ”€ 8 Β· πŸ“‹ 6 - 83% open Β· ⏱️ 19.11.2024): ``` git clone https://github.com/deepmodeling/AIS-Square ```
Materials Data Facility (MDF) (πŸ₯ˆ9 Β· ⭐ 10 Β· πŸ’€) - A simple way to publish, discover, and access materials datasets. Publication of very large datasets supported (e.g.,.. Apache-2 - [GitHub](https://github.com/materials-data-facility/connect_client) (πŸ‘¨β€πŸ’» 7 Β· πŸ”€ 1 Β· πŸ“‹ 7 - 14% open Β· ⏱️ 05.02.2024): ``` git clone https://github.com/materials-data-facility/connect_client ```
2DMD dataset (πŸ₯ˆ9 Β· ⭐ 6 Β· πŸ’€) - Code for Kazeev, N., Al-Maeeni, A.R., Romanov, I. et al. Sparse representation for machine learning the properties of.. Apache-2 material-defect - [GitHub](https://github.com/HSE-LAMBDA/ai4material_design) (πŸ‘¨β€πŸ’» 11 Β· πŸ”€ 3 Β· ⏱️ 21.11.2023): ``` git clone https://github.com/HSE-LAMBDA/ai4material_design ```
Meta Open Materials 2024 (OMat24) Dataset (πŸ₯ˆ9) - Contains over 100 million Density Functional Theory calculations focused on structural and compositional diversity. CC-BY-4.0 - [GitHub](): ``` git clone https://github.com/https://github.com/FAIR-Chem/fairchem ``` - [PyPi](https://pypi.org/project/fairchem-core) (πŸ“₯ 3.4K / month Β· πŸ“¦ 1 Β· ⏱️ 14.09.2024): ``` pip install fairchem-core ```
3DSC Database (πŸ₯‰6 Β· ⭐ 15) - Repo for the paper publishing the superconductor database with 3D crystal structures. Custom superconductors materials-discovery - [GitHub](https://github.com/aimat-lab/3DSC) (πŸ”€ 5 Β· πŸ“‹ 2 - 50% open Β· ⏱️ 21.11.2024): ``` git clone https://github.com/aimat-lab/3DSC ```
The Perovskite Database Project (πŸ₯‰5 Β· ⭐ 60 Β· πŸ’€) - Perovskite Database Project aims at making all perovskite device data, both past and future, available in a form.. Unlicensed community-resource - [GitHub](https://github.com/Jesperkemist/perovskitedatabase) (πŸ‘¨β€πŸ’» 2 Β· πŸ”€ 20 Β· ⏱️ 07.03.2024): ``` git clone https://github.com/Jesperkemist/perovskitedatabase ```
Show 15 hidden projects... - ATOM3D (πŸ₯ˆ20 Β· ⭐ 300 Β· πŸ’€) - ATOM3D: tasks on molecules in three dimensions. MIT biomolecules benchmarking - OpenKIM (πŸ₯ˆ10 Β· ⭐ 31 Β· πŸ’€) - The Open Knowledgebase of Interatomic Models (OpenKIM) aims to be an online resource for standardized testing, long-.. LGPL-2.1 model-repository knowledge-base pretrained - ANI-1 Dataset (πŸ₯‰8 Β· ⭐ 96 Β· πŸ’€) - A data set of 20 million calculated off-equilibrium conformations for organic molecules. MIT - MoleculeNet Leaderboard (πŸ₯‰8 Β· ⭐ 90 Β· πŸ’€) - MIT benchmarking - GEOM (πŸ₯‰7 Β· ⭐ 200 Β· πŸ’€) - GEOM: Energy-annotated molecular conformations. Unlicensed drug-discovery - ANI-1x Datasets (πŸ₯‰6 Β· ⭐ 60 Β· πŸ’€) - The ANI-1ccx and ANI-1x data sets, coupled-cluster and density functional theory properties for organic molecules. MIT - COMP6 Benchmark dataset (πŸ₯‰6 Β· ⭐ 39 Β· πŸ’€) - COMP6 Benchmark dataset for ML potentials. MIT - GDB-9-Ex9 and ORNL_AISD-Ex (πŸ₯‰6 Β· ⭐ 6 Β· πŸ’€) - Distributed computing workflow for generation and analysis of large scale molecular datasets obtained running multi-.. Unlicensed - SciGlass (πŸ₯‰5 Β· ⭐ 11 Β· πŸ’€) - The database contains a vast set of data on the properties of glass materials. MIT - linear-regression-benchmarks (πŸ₯‰5 Β· ⭐ 1 Β· πŸ’€) - Data sets used for linear regression benchmarks. MIT benchmarking single-paper - paper-data-redundancy (πŸ₯‰4 Β· ⭐ 8) - Repo for the paper Exploiting redundancy in large materials datasets for efficient machine learning with less data. BSD-3 small-data single-paper - Visual Graph Datasets (πŸ₯‰4 Β· ⭐ 2) - Datasets for the training of graph neural networks (GNNs) and subsequent visualization of attributional explanations.. MIT XAI rep-learn - OPTIMADE providers dashboard (πŸ₯‰4 Β· ⭐ 1) - A dashboard of known providers. Unlicensed - nep-data (πŸ₯‰2 Β· ⭐ 13 Β· πŸ’€) - Data related to the NEP machine-learned potential of GPUMD. Unlicensed ML-IAP MD transport-phenomena - tmQM_wB97MV Dataset (πŸ₯‰2 Β· ⭐ 6 Β· πŸ’€) - Code for Applying Large Graph Neural Networks to Predict Transition Metal Complex Energies Using the tmQM_wB97MV.. Unlicensed catalysis rep-learn


Data Structures

Back to top

Projects that focus on providing data structures used in atomistic machine learning.

dpdata (πŸ₯‡25 Β· ⭐ 200) - A Python package for manipulating atomistic data of software in computational science. LGPL-3.0 - [GitHub](https://github.com/deepmodeling/dpdata) (πŸ‘¨β€πŸ’» 61 Β· πŸ”€ 130 Β· πŸ“¦ 130 Β· πŸ“‹ 120 - 28% open Β· ⏱️ 20.09.2024): ``` git clone https://github.com/deepmodeling/dpdata ``` - [PyPi](https://pypi.org/project/dpdata) (πŸ“₯ 72K / month Β· πŸ“¦ 40 Β· ⏱️ 20.09.2024): ``` pip install dpdata ``` - [Conda](https://anaconda.org/deepmodeling/dpdata) (πŸ“₯ 240 Β· ⏱️ 27.09.2023): ``` conda install -c deepmodeling dpdata ```
Metatensor (πŸ₯ˆ22 Β· ⭐ 54) - Self-describing sparse tensor data format for atomistic machine learning and beyond. BSD-3 Rust C-lang C++ Python - [GitHub](https://github.com/metatensor/metatensor) (πŸ‘¨β€πŸ’» 26 Β· πŸ”€ 18 Β· πŸ“₯ 32K Β· πŸ“¦ 13 Β· πŸ“‹ 220 - 29% open Β· ⏱️ 20.11.2024): ``` git clone https://github.com/lab-cosmo/metatensor ```
mp-pyrho (πŸ₯‰18 Β· ⭐ 37) - Tools for re-griding volumetric quantum chemistry data for machine-learning purposes. Custom ML-DFT - [GitHub](https://github.com/materialsproject/pyrho) (πŸ‘¨β€πŸ’» 10 Β· πŸ”€ 7 Β· πŸ“¦ 25 Β· πŸ“‹ 5 - 40% open Β· ⏱️ 22.10.2024): ``` git clone https://github.com/materialsproject/pyrho ``` - [PyPi](https://pypi.org/project/mp-pyrho) (πŸ“₯ 11K / month Β· πŸ“¦ 5 Β· ⏱️ 22.10.2024): ``` pip install mp-pyrho ```
dlpack (πŸ₯‰15 Β· ⭐ 910) - common in-memory tensor structure. Apache-2 C++ - [GitHub](https://github.com/dmlc/dlpack) (πŸ‘¨β€πŸ’» 24 Β· πŸ”€ 130 Β· πŸ“‹ 72 - 41% open Β· ⏱️ 28.09.2024): ``` git clone https://github.com/dmlc/dlpack ```


Density functional theory (ML-DFT)

Back to top

Projects and models that focus on quantities of DFT, such as density functional approximations (ML-DFA), the charge density, density of states, the Hamiltonian, etc.

πŸ”— IKS-PIML - Code and generated data for the paper Inverting the Kohn-Sham equations with physics-informed machine learning.. neural-operator pinn datasets single-paper

JAX-DFT (πŸ₯‡25 Β· ⭐ 34K) - This library provides basic building blocks that can construct DFT calculations as a differentiable program. Apache-2 - [GitHub](https://github.com/google-research/google-research) (πŸ‘¨β€πŸ’» 810 Β· πŸ”€ 7.9K Β· πŸ“‹ 1.8K - 81% open Β· ⏱️ 15.11.2024): ``` git clone https://github.com/google-research/google-research ```
MALA (πŸ₯‡19 Β· ⭐ 82) - Materials Learning Algorithms. A framework for machine learning materials properties from first-principles data. BSD-3 - [GitHub](https://github.com/mala-project/mala) (πŸ‘¨β€πŸ’» 44 Β· πŸ”€ 24 Β· πŸ“¦ 2 Β· πŸ“‹ 280 - 11% open Β· ⏱️ 21.11.2024): ``` git clone https://github.com/mala-project/mala ```
QHNet (πŸ₯‡13 Β· ⭐ 530) - Artificial Intelligence Research for Science (AIRS). GPL-3.0 rep-learn - [GitHub](https://github.com/divelab/AIRS) (πŸ‘¨β€πŸ’» 30 Β· πŸ”€ 61 Β· πŸ“‹ 18 - 11% open Β· ⏱️ 15.11.2024): ``` git clone https://github.com/divelab/AIRS ```
SALTED (πŸ₯‡13 Β· ⭐ 31) - Symmetry-Adapted Learning of Three-dimensional Electron Densities. GPL-3.0 - [GitHub](https://github.com/andreagrisafi/SALTED) (πŸ‘¨β€πŸ’» 17 Β· πŸ”€ 4 Β· πŸ“‹ 6 - 16% open Β· ⏱️ 27.09.2024): ``` git clone https://github.com/andreagrisafi/SALTED ```
DeepH-pack (πŸ₯ˆ12 Β· ⭐ 240) - Deep neural networks for density functional theory Hamiltonian. LGPL-3.0 Julia - [GitHub](https://github.com/mzjb/DeepH-pack) (πŸ‘¨β€πŸ’» 8 Β· πŸ”€ 44 Β· πŸ“‹ 53 - 26% open Β· ⏱️ 07.10.2024): ``` git clone https://github.com/mzjb/DeepH-pack ```
DeePKS-kit (πŸ₯ˆ10 Β· ⭐ 100 Β· πŸ’€) - a package for developing machine learning-based chemically accurate energy and density functional models. LGPL-3.0 - [GitHub](https://github.com/deepmodeling/deepks-kit) (πŸ‘¨β€πŸ’» 7 Β· πŸ”€ 35 Β· πŸ“‹ 22 - 36% open Β· ⏱️ 13.04.2024): ``` git clone https://github.com/deepmodeling/deepks-kit ```
Grad DFT (πŸ₯ˆ10 Β· ⭐ 77 Β· πŸ’€) - GradDFT is a JAX-based library enabling the differentiable design and experimentation of exchange-correlation.. Apache-2 - [GitHub](https://github.com/XanaduAI/GradDFT) (πŸ‘¨β€πŸ’» 4 Β· πŸ”€ 7 Β· πŸ“‹ 54 - 20% open Β· ⏱️ 13.02.2024): ``` git clone https://github.com/XanaduAI/GradDFT ```
HamGNN (πŸ₯ˆ7 Β· ⭐ 63) - An E(3) equivariant Graph Neural Network for predicting electronic Hamiltonian matrix. GPL-3.0 rep-learn magnetism C-lang - [GitHub](https://github.com/QuantumLab-ZY/HamGNN) (πŸ‘¨β€πŸ’» 2 Β· πŸ”€ 15 Β· πŸ“‹ 32 - 81% open Β· ⏱️ 14.11.2024): ``` git clone https://github.com/QuantumLab-ZY/HamGNN ```
Q-stack (πŸ₯ˆ7 Β· ⭐ 15) - Stack of codes for dedicated pre- and post-processing tasks for Quantum Machine Learning (QML). MIT excited-states general-tool - [GitHub](https://github.com/lcmd-epfl/Q-stack) (πŸ‘¨β€πŸ’» 7 Β· πŸ”€ 5 Β· πŸ“‹ 29 - 31% open Β· ⏱️ 26.09.2024): ``` git clone https://github.com/lcmd-epfl/Q-stack ```
ChargE3Net (πŸ₯‰6 Β· ⭐ 38) - Higher-order equivariant neural networks for charge density prediction in materials. MIT rep-learn - [GitHub](https://github.com/AIforGreatGood/charge3net) (πŸ‘¨β€πŸ’» 2 Β· πŸ”€ 12 Β· πŸ“‹ 7 - 42% open Β· ⏱️ 30.10.2024): ``` git clone https://github.com/AIforGreatGood/charge3net ```
charge-density-models (πŸ₯‰6 Β· ⭐ 10 Β· πŸ’€) - Tools to build charge density models using [fairchem](https://github.com/FAIR-Chem/fairchem). MIT rep-learn - [GitHub](https://github.com/ulissigroup/charge-density-models) (πŸ”€ 3 Β· πŸ“‹ 4 - 25% open Β· ⏱️ 29.11.2023): ``` git clone https://github.com/ulissigroup/charge-density-models ```
InfGCN for Electron Density Estimation (πŸ₯‰5 Β· ⭐ 11 Β· πŸ’€) - Official implementation of the NeurIPS 23 spotlight paper of InfGCN. MIT rep-learn neural-operator - [GitHub](https://github.com/ccr-cheng/InfGCN-pytorch) (πŸ”€ 3 Β· ⏱️ 05.12.2023): ``` git clone https://github.com/ccr-cheng/infgcn-pytorch ```
Show 20 hidden projects... - DM21 (πŸ₯‡20 Β· ⭐ 13K Β· πŸ’€) - This package provides a PySCF interface to the DM21 (DeepMind 21) family of exchange-correlation functionals described.. Apache-2 - NeuralXC (πŸ₯ˆ10 Β· ⭐ 33 Β· πŸ’€) - Implementation of a machine learned density functional. BSD-3 - ACEhamiltonians (πŸ₯ˆ10 Β· ⭐ 13 Β· πŸ’€) - Provides tools for constructing, fitting, and predicting self-consistent Hamiltonian and overlap matrices in solid-.. MIT Julia - PROPhet (πŸ₯ˆ9 Β· ⭐ 64 Β· πŸ’€) - PROPhet is a code to integrate machine learning techniques with first-principles quantum chemistry approaches. GPL-3.0 ML-IAP MD single-paper C++ - DeepH-E3 (πŸ₯ˆ7 Β· ⭐ 78 Β· πŸ’€) - General framework for E(3)-equivariant neural network representation of density functional theory Hamiltonian. MIT magnetism - Mat2Spec (πŸ₯ˆ7 Β· ⭐ 28 Β· πŸ’€) - Density of States Prediction for Materials Discovery via Contrastive Learning from Probabilistic Embeddings. MIT spectroscopy - Libnxc (πŸ₯ˆ7 Β· ⭐ 16 Β· πŸ’€) - A library for using machine-learned exchange-correlation functionals for density-functional theory. MPL-2.0 C++ Fortran - DeepDFT (πŸ₯‰6 Β· ⭐ 61 Β· πŸ’€) - Official implementation of DeepDFT model. MIT - KSR-DFT (πŸ₯‰6 Β· ⭐ 4 Β· πŸ’€) - Kohn-Sham regularizer for machine-learned DFT functionals. Apache-2 - xDeepH (πŸ₯‰5 Β· ⭐ 33 Β· πŸ’€) - Extended DeepH (xDeepH) method for magnetic materials. LGPL-3.0 magnetism Julia - ML-DFT (πŸ₯‰5 Β· ⭐ 23 Β· πŸ’€) - A package for density functional approximation using machine learning. MIT - rho_learn (πŸ₯‰5 Β· ⭐ 4 Β· πŸ’€) - A proof-of-concept workflow for torch-based electron density learning. MIT - DeepCDP (πŸ₯‰4 Β· ⭐ 6 Β· πŸ’€) - DeepCDP: Deep learning Charge Density Prediction. Unlicensed - MALADA (πŸ₯‰4 Β· ⭐ 1) - MALA Data Acquisition: Helpful tools to build data for MALA. BSD-3 - gprep (πŸ₯‰4 Β· πŸ’€) - Fitting DFTB repulsive potentials with GPR. MIT single-paper - APET (πŸ₯‰3 Β· ⭐ 4 Β· πŸ’€) - Atomic Positional Embedding-based Transformer. GPL-3.0 density-of-states transformer - CSNN (πŸ₯‰3 Β· ⭐ 2 Β· πŸ’€) - Primary codebase of CSNN - Concentric Spherical Neural Network for 3D Representation Learning. BSD-3 - A3MD (πŸ₯‰2 Β· ⭐ 8 Β· πŸ’€) - MPNN-like + Analytic Density Model = Accurate electron densities. Unlicensed rep-learn single-paper - MLDensity (πŸ₯‰1 Β· ⭐ 3 Β· πŸ’€) - Linear Jacobi-Legendre expansion of the charge density for machine learning-accelerated electronic structure.. Unlicensed - kdft (πŸ₯‰1 Β· ⭐ 2 Β· πŸ’€) - The Kernel Density Functional (KDF) code allows generating ML based DFT functionals. Unlicensed


Educational Resources

Back to top

Tutorials, guides, cookbooks, recipes, etc.

πŸ”— AI for Science 101 community-resource rep-learn

πŸ”— AL4MS 2023 workshop tutorials active-learning

πŸ”— Quantum Chemistry in the Age of Machine Learning - Book, 2022.

AI4Chemistry course (πŸ₯ˆ10 Β· ⭐ 140) - EPFL AI for chemistry course, Spring 2023. https://schwallergroup.github.io/ai4chem_course. MIT chemistry - [GitHub](https://github.com/schwallergroup/ai4chem_course) (πŸ‘¨β€πŸ’» 6 Β· πŸ”€ 35 Β· πŸ“‹ 4 - 25% open Β· ⏱️ 02.05.2024): ``` git clone https://github.com/schwallergroup/ai4chem_course ```
jarvis-tools-notebooks (πŸ₯ˆ9 Β· ⭐ 66) - A Google-Colab Notebook Collection for Materials Design: https://jarvis.nist.gov/. NIST - [GitHub](https://github.com/JARVIS-Materials-Design/jarvis-tools-notebooks) (πŸ‘¨β€πŸ’» 5 Β· πŸ”€ 26 Β· ⏱️ 14.08.2024): ``` git clone https://github.com/JARVIS-Materials-Design/jarvis-tools-notebooks ```
DSECOP (πŸ₯ˆ9 Β· ⭐ 44) - This repository contains data science educational materials developed by DSECOP Fellows. CCO-1.0 - [GitHub](https://github.com/GDS-Education-Community-of-Practice/DSECOP) (πŸ‘¨β€πŸ’» 14 Β· πŸ”€ 26 Β· πŸ“‹ 8 - 12% open Β· ⏱️ 26.06.2024): ``` git clone https://github.com/GDS-Education-Community-of-Practice/DSECOP ```
iam-notebooks (πŸ₯ˆ9 Β· ⭐ 26) - Jupyter notebooks for the lectures of the Introduction to Atomistic Modeling. Apache-2 - [GitHub](https://github.com/ceriottm/iam-notebooks) (πŸ‘¨β€πŸ’» 6 Β· πŸ”€ 5 Β· ⏱️ 09.10.2024): ``` git clone https://github.com/ceriottm/iam-notebooks ```
COSMO Software Cookbook (πŸ₯ˆ9 Β· ⭐ 16) - A cookbook wtih recipes for atomic-scale modeling of materials and molecules. BSD-3 - [GitHub](https://github.com/lab-cosmo/atomistic-cookbook) (πŸ‘¨β€πŸ’» 11 Β· πŸ”€ 1 Β· πŸ“‹ 12 - 8% open Β· ⏱️ 20.11.2024): ``` git clone https://github.com/lab-cosmo/software-cookbook ```
BestPractices (πŸ₯ˆ8 Β· ⭐ 180 Β· πŸ’€) - Things that you should (and should not) do in your Materials Informatics research. MIT - [GitHub](https://github.com/anthony-wang/BestPractices) (πŸ‘¨β€πŸ’» 3 Β· πŸ”€ 71 Β· πŸ“‹ 7 - 71% open Β· ⏱️ 17.11.2023): ``` git clone https://github.com/anthony-wang/BestPractices ```
MACE-tutorials (πŸ₯‰7 Β· ⭐ 41) - Another set of tutorials for the MACE interatomic potential by one of the authors. MIT ML-IAP rep-learn MD - [GitHub](https://github.com/ilyes319/mace-tutorials) (πŸ‘¨β€πŸ’» 2 Β· πŸ”€ 11 Β· ⏱️ 16.07.2024): ``` git clone https://github.com/ilyes319/mace-tutorials ```
Show 18 hidden projects... - Geometric GNN Dojo (πŸ₯‡12 Β· ⭐ 470 Β· πŸ’€) - New to geometric GNNs: try our practical notebook, prepared for MPhil students at the University of Cambridge. MIT rep-learn - DeepLearningLifeSciences (πŸ₯‡12 Β· ⭐ 360 Β· πŸ’€) - Example code from the book Deep Learning for the Life Sciences. MIT - Deep Learning for Molecules and Materials Book (πŸ₯‡11 Β· ⭐ 620 Β· πŸ’€) - Deep learning for molecules and materials book. Custom - OPTIMADE Tutorial Exercises (πŸ₯ˆ9 Β· ⭐ 15 Β· πŸ’€) - Tutorial exercises for the OPTIMADE API. MIT datasets - RDKit Tutorials (πŸ₯ˆ8 Β· ⭐ 260 Β· πŸ’€) - Tutorials to learn how to work with the RDKit. Custom - MAChINE (πŸ₯‰7 Β· ⭐ 1 Β· πŸ’€) - Client-Server Web App to introduce usage of ML in materials science to beginners. MIT - Applied AI for Materials (πŸ₯‰6 Β· ⭐ 59 Β· πŸ’€) - Course materials for Applied AI for Materials Science and Engineering. Unlicensed - ML for catalysis tutorials (πŸ₯‰6 Β· ⭐ 8 Β· πŸ’€) - A jupyter book repo for tutorial on how to use OCP ML models for catalysis. MIT - AI4Science101 (πŸ₯‰5 Β· ⭐ 84 Β· πŸ’€) - AI for Science. Unlicensed - Machine Learning for Materials Hard and Soft (πŸ₯‰5 Β· ⭐ 34 Β· πŸ’€) - ESI-DCAFM-TACO-VDSP Summer School on Machine Learning for Materials Hard and Soft. Unlicensed - Data Handling, DoE and Statistical Analysis for Material Chemists (πŸ₯‰5 Β· ⭐ 1 Β· πŸ’€) - Notebooks for workshops of DoE course, hosted by the Computational Materials Chemistry group at Uppsala University. GPL-3.0 - ML-in-chemistry-101 (πŸ₯‰4 Β· ⭐ 71 Β· πŸ’€) - The course materials for Machine Learning in Chemistry 101. Unlicensed - chemrev-gpr (πŸ₯‰4 Β· ⭐ 7 Β· πŸ’€) - Notebooks accompanying the paper on GPR in materials and molecules in Chemical Reviews 2020. Unlicensed - PiNN Lab (πŸ₯‰4 Β· ⭐ 3 Β· πŸ’€) - Material for running a lab session on atomic neural networks. GPL-3.0 - AI4ChemMat Hands-On Series (πŸ₯‰4 Β· ⭐ 1 Β· πŸ’€) - Hands-On Series organized by Chemistry and Materials working group at Argonne Nat Lab. MPL-2.0 - MLDensity_tutorial (πŸ₯‰2 Β· ⭐ 9 Β· πŸ’€) - Tutorial files to work with ML for the charge density in molecules and solids. Unlicensed - LAMMPS-style pair potentials with GAP (πŸ₯‰2 Β· ⭐ 4 Β· πŸ’€) - A tutorial on how to create LAMMPS-style pair potentials and use them in combination with GAP potentials to run MD.. Unlicensed ML-IAP MD rep-eng - MALA Tutorial (πŸ₯‰2 Β· ⭐ 2 Β· πŸ’€) - A full MALA hands-on tutorial. Unlicensed


Explainable Artificial intelligence (XAI)

Back to top

Projects that focus on explainability and model interpretability in atomistic ML.

exmol (πŸ₯‡19 Β· ⭐ 290 Β· πŸ’€) - Explainer for black box models that predict molecule properties. MIT - [GitHub](https://github.com/ur-whitelab/exmol) (πŸ‘¨β€πŸ’» 7 Β· πŸ”€ 41 Β· πŸ“¦ 21 Β· πŸ“‹ 69 - 15% open Β· ⏱️ 04.12.2023): ``` git clone https://github.com/ur-whitelab/exmol ``` - [PyPi](https://pypi.org/project/exmol) (πŸ“₯ 2.3K / month Β· πŸ“¦ 1 Β· ⏱️ 03.06.2022): ``` pip install exmol ```
MEGAN: Multi Explanation Graph Attention Student (πŸ₯‰6 Β· ⭐ 6) - Minimal implementation of graph attention student model architecture. MIT rep-learn - [GitHub](https://github.com/aimat-lab/graph_attention_student) (πŸ‘¨β€πŸ’» 2 Β· πŸ”€ 1 Β· πŸ“‹ 3 - 33% open Β· ⏱️ 07.10.2024): ``` git clone https://github.com/aimat-lab/graph_attention_student ```
Show 1 hidden projects... - Linear vs blackbox (πŸ₯‰3 Β· ⭐ 2 Β· πŸ’€) - Code and data related to the publication: Interpretable models for extrapolation in scientific machine learning. MIT XAI single-paper rep-eng


Electronic structure methods (ML-ESM)

Back to top

Projects and models that focus on quantities of electronic structure methods, which do not fit into either of the categories ML-WFT or ML-DFT.

Show 5 hidden projects... - QDF for molecule (πŸ₯‡8 Β· ⭐ 210 Β· πŸ’€) - Quantum deep field: data-driven wave function, electron density generation, and energy prediction and extrapolation.. MIT - QMLearn (πŸ₯ˆ5 Β· ⭐ 11 Β· πŸ’€) - Quantum Machine Learning by learning one-body reduced density matrices in the AO basis... MIT - q-pac (πŸ₯ˆ5 Β· ⭐ 4 Β· πŸ’€) - Kernel charge equilibration method. MIT electrostatics - halex (πŸ₯ˆ5 Β· ⭐ 3 Β· πŸ’€) - Hamiltonian Learning for Excited States https://doi.org/10.48550/arXiv.2311.00844. Unlicensed excited-states - e3psi (πŸ₯‰3 Β· ⭐ 3 Β· πŸ’€) - Equivariant machine learning library for learning from electronic structures. LGPL-3.0


General Tools

Back to top

General tools for atomistic machine learning.

RDKit (πŸ₯‡36 Β· ⭐ 2.7K) - BSD-3 C++ - [GitHub](https://github.com/rdkit/rdkit) (πŸ‘¨β€πŸ’» 240 Β· πŸ”€ 870 Β· πŸ“₯ 920 Β· πŸ“¦ 3 Β· πŸ“‹ 3.6K - 26% open Β· ⏱️ 21.11.2024): ``` git clone https://github.com/rdkit/rdkit ``` - [PyPi](https://pypi.org/project/rdkit) (πŸ“₯ 2.6M / month Β· πŸ“¦ 790 Β· ⏱️ 07.11.2024): ``` pip install rdkit ``` - [Conda](https://anaconda.org/rdkit/rdkit) (πŸ“₯ 2.6M Β· ⏱️ 16.06.2023): ``` conda install -c rdkit rdkit ```
DeepChem (πŸ₯‡35 Β· ⭐ 5.5K) - Democratizing Deep-Learning for Drug Discovery, Quantum Chemistry, Materials Science and Biology. MIT - [GitHub](https://github.com/deepchem/deepchem) (πŸ‘¨β€πŸ’» 250 Β· πŸ”€ 1.7K Β· πŸ“¦ 460 Β· πŸ“‹ 1.9K - 34% open Β· ⏱️ 20.11.2024): ``` git clone https://github.com/deepchem/deepchem ``` - [PyPi](https://pypi.org/project/deepchem) (πŸ“₯ 94K / month Β· πŸ“¦ 13 Β· ⏱️ 20.11.2024): ``` pip install deepchem ``` - [Conda](https://anaconda.org/conda-forge/deepchem) (πŸ“₯ 110K Β· ⏱️ 05.04.2024): ``` conda install -c conda-forge deepchem ``` - [Docker Hub](https://hub.docker.com/r/deepchemio/deepchem) (πŸ“₯ 7.8K Β· ⭐ 5 Β· ⏱️ 06.11.2024): ``` docker pull deepchemio/deepchem ```
Matminer (πŸ₯‡29 Β· ⭐ 480) - Data mining for materials science. Custom - [GitHub](https://github.com/hackingmaterials/matminer) (πŸ‘¨β€πŸ’» 56 Β· πŸ”€ 190 Β· πŸ“¦ 330 Β· πŸ“‹ 230 - 13% open Β· ⏱️ 11.10.2024): ``` git clone https://github.com/hackingmaterials/matminer ``` - [PyPi](https://pypi.org/project/matminer) (πŸ“₯ 17K / month Β· πŸ“¦ 60 Β· ⏱️ 06.10.2024): ``` pip install matminer ``` - [Conda](https://anaconda.org/conda-forge/matminer) (πŸ“₯ 75K Β· ⏱️ 06.10.2024): ``` conda install -c conda-forge matminer ```
MAML (πŸ₯ˆ24 Β· ⭐ 370) - Python for Materials Machine Learning, Materials Descriptors, Machine Learning Force Fields, Deep Learning, etc. BSD-3 - [GitHub](https://github.com/materialsvirtuallab/maml) (πŸ‘¨β€πŸ’» 33 Β· πŸ”€ 78 Β· πŸ“¦ 11 Β· πŸ“‹ 71 - 12% open Β· ⏱️ 06.11.2024): ``` git clone https://github.com/materialsvirtuallab/maml ``` - [PyPi](https://pypi.org/project/maml) (πŸ“₯ 610 / month Β· πŸ“¦ 2 Β· ⏱️ 13.06.2024): ``` pip install maml ```
QUIP (πŸ₯ˆ24 Β· ⭐ 350) - libAtoms/QUIP molecular dynamics framework: https://libatoms.github.io. GPL-2.0 MD ML-IAP rep-eng Fortran - [GitHub](https://github.com/libAtoms/QUIP) (πŸ‘¨β€πŸ’» 85 Β· πŸ”€ 120 Β· πŸ“₯ 700 Β· πŸ“¦ 45 Β· πŸ“‹ 470 - 22% open Β· ⏱️ 27.09.2024): ``` git clone https://github.com/libAtoms/QUIP ``` - [PyPi](https://pypi.org/project/quippy-ase) (πŸ“₯ 6.9K / month Β· πŸ“¦ 4 Β· ⏱️ 15.01.2023): ``` pip install quippy-ase ``` - [Docker Hub](https://hub.docker.com/r/libatomsquip/quip) (πŸ“₯ 10K Β· ⭐ 4 Β· ⏱️ 24.04.2023): ``` docker pull libatomsquip/quip ```
JARVIS-Tools (πŸ₯ˆ24 Β· ⭐ 310) - JARVIS-Tools: an open-source software package for data-driven atomistic materials design. Publications:.. Custom - [GitHub](https://github.com/usnistgov/jarvis) (πŸ‘¨β€πŸ’» 15 Β· πŸ”€ 120 Β· πŸ“¦ 100 Β· πŸ“‹ 92 - 51% open Β· ⏱️ 20.11.2024): ``` git clone https://github.com/usnistgov/jarvis ``` - [PyPi](https://pypi.org/project/jarvis-tools) (πŸ“₯ 37K / month Β· πŸ“¦ 31 Β· ⏱️ 20.11.2024): ``` pip install jarvis-tools ``` - [Conda](https://anaconda.org/conda-forge/jarvis-tools) (πŸ“₯ 83K Β· ⏱️ 20.11.2024): ``` conda install -c conda-forge jarvis-tools ```
MAST-ML (πŸ₯ˆ20 Β· ⭐ 100) - MAterials Simulation Toolkit for Machine Learning (MAST-ML). MIT - [GitHub](https://github.com/uw-cmg/MAST-ML) (πŸ‘¨β€πŸ’» 19 Β· πŸ”€ 61 Β· πŸ“₯ 130 Β· πŸ“¦ 45 Β· πŸ“‹ 220 - 14% open Β· ⏱️ 09.10.2024): ``` git clone https://github.com/uw-cmg/MAST-ML ```
Scikit-Matter (πŸ₯ˆ17 Β· ⭐ 77) - A collection of scikit-learn compatible utilities that implement methods born out of the materials science and.. BSD-3 scikit-learn - [GitHub](https://github.com/scikit-learn-contrib/scikit-matter) (πŸ‘¨β€πŸ’» 15 Β· πŸ”€ 19 Β· πŸ“¦ 11 Β· πŸ“‹ 70 - 20% open Β· ⏱️ 09.10.2024): ``` git clone https://github.com/scikit-learn-contrib/scikit-matter ``` - [PyPi](https://pypi.org/project/skmatter) (πŸ“₯ 2.5K / month Β· ⏱️ 24.08.2023): ``` pip install skmatter ``` - [Conda](https://anaconda.org/conda-forge/skmatter) (πŸ“₯ 2.4K Β· ⏱️ 24.08.2023): ``` conda install -c conda-forge skmatter ```
XenonPy (πŸ₯ˆ16 Β· ⭐ 140 Β· πŸ’€) - XenonPy is a Python Software for Materials Informatics. BSD-3 - [GitHub](https://github.com/yoshida-lab/XenonPy) (πŸ‘¨β€πŸ’» 10 Β· πŸ”€ 61 Β· πŸ“₯ 1.4K Β· πŸ“‹ 87 - 24% open Β· ⏱️ 21.04.2024): ``` git clone https://github.com/yoshida-lab/XenonPy ``` - [PyPi](https://pypi.org/project/xenonpy) (πŸ“₯ 1.7K / month Β· πŸ“¦ 1 Β· ⏱️ 31.10.2022): ``` pip install xenonpy ```
MLatom (πŸ₯ˆ16 Β· ⭐ 66) - AI-enhanced computational chemistry. MIT UIP ML-IAP MD ML-DFT ML-ESM transfer-learning active-learning spectroscopy structure-optimization - [GitHub](https://github.com/dralgroup/mlatom) (πŸ‘¨β€πŸ’» 3 Β· πŸ”€ 11 Β· πŸ“‹ 5 - 20% open Β· ⏱️ 21.11.2024): ``` git clone https://github.com/dralgroup/mlatom ``` - [PyPi](https://pypi.org/project/mlatom) (πŸ“₯ 2.2K / month Β· ⏱️ 20.11.2024): ``` pip install mlatom ```
Artificial Intelligence for Science (AIRS) (πŸ₯‰13 Β· ⭐ 530) - Artificial Intelligence Research for Science (AIRS). GPL-3.0 license rep-learn generative ML-IAP MD ML-DFT ML-WFT biomolecules - [GitHub](https://github.com/divelab/AIRS) (πŸ‘¨β€πŸ’» 30 Β· πŸ”€ 61 Β· πŸ“‹ 18 - 11% open Β· ⏱️ 15.11.2024): ``` git clone https://github.com/divelab/AIRS ```
Show 11 hidden projects... - QML (πŸ₯ˆ16 Β· ⭐ 200 Β· πŸ’€) - QML: Quantum Machine Learning. MIT - Automatminer (πŸ₯ˆ16 Β· ⭐ 140 Β· πŸ’€) - An automatic engine for predicting materials properties. Custom autoML - AMPtorch (πŸ₯‰11 Β· ⭐ 59 Β· πŸ’€) - AMPtorch: Atomistic Machine Learning Package (AMP) - PyTorch. GPL-3.0 - OpenChem (πŸ₯‰10 Β· ⭐ 680 Β· πŸ’€) - OpenChem: Deep Learning toolkit for Computational Chemistry and Drug Design Research. MIT - JAXChem (πŸ₯‰7 Β· ⭐ 79 Β· πŸ’€) - JAXChem is a JAX-based deep learning library for complex and versatile chemical modeling. MIT - uncertainty_benchmarking (πŸ₯‰7 Β· ⭐ 40 Β· πŸ’€) - Various code/notebooks to benchmark different ways we could estimate uncertainty in ML predictions. Unlicensed benchmarking probabilistic - torchchem (πŸ₯‰7 Β· ⭐ 35 Β· πŸ’€) - An experimental repo for experimenting with PyTorch models. MIT - Equisolve (πŸ₯‰6 Β· ⭐ 5 Β· πŸ’€) - A ML toolkit package utilizing the metatensor data format to build models for the prediction of equivariant properties.. BSD-3 ML-IAP - ACEatoms (πŸ₯‰4 Β· ⭐ 2 Β· πŸ’€) - Generic code for modelling atomic properties using ACE. Custom Julia - Magpie (πŸ₯‰3) - Materials Agnostic Platform for Informatics and Exploration (Magpie). MIT Java - quantum-structure-ml (πŸ₯‰2 Β· ⭐ 2 Β· πŸ’€) - Multi-class classification model for predicting the magnetic order of magnetic structures and a binary classification.. Unlicensed magnetism benchmarking


Generative Models

Back to top

Projects that implement generative models for atomistic ML.

GT4SD (πŸ₯‡18 Β· ⭐ 340) - GT4SD, an open-source library to accelerate hypothesis generation in the scientific discovery process. MIT pretrained drug-discovery rep-learn - [GitHub](https://github.com/GT4SD/gt4sd-core) (πŸ‘¨β€πŸ’» 20 Β· πŸ”€ 72 Β· πŸ“‹ 110 - 12% open Β· ⏱️ 12.09.2024): ``` git clone https://github.com/GT4SD/gt4sd-core ``` - [PyPi](https://pypi.org/project/gt4sd) (πŸ“₯ 3.4K / month Β· ⏱️ 12.09.2024): ``` pip install gt4sd ```
MoLeR (πŸ₯‡15 Β· ⭐ 280 Β· πŸ’€) - Implementation of MoLeR: a generative model of molecular graphs which supports scaffold-constrained generation. MIT - [GitHub](https://github.com/microsoft/molecule-generation) (πŸ‘¨β€πŸ’» 5 Β· πŸ”€ 42 Β· πŸ“‹ 39 - 20% open Β· ⏱️ 03.01.2024): ``` git clone https://github.com/microsoft/molecule-generation ``` - [PyPi](https://pypi.org/project/molecule-generation) (πŸ“₯ 280 / month Β· πŸ“¦ 1 Β· ⏱️ 05.01.2024): ``` pip install molecule-generation ```
PMTransformer (πŸ₯‡15 Β· ⭐ 86) - Universal Transfer Learning in Porous Materials, including MOFs. MIT transfer-learning pretrained transformer - [GitHub](https://github.com/hspark1212/MOFTransformer) (πŸ‘¨β€πŸ’» 2 Β· πŸ”€ 13 Β· πŸ“¦ 8 Β· ⏱️ 20.06.2024): ``` git clone https://github.com/hspark1212/MOFTransformer ``` - [PyPi](https://pypi.org/project/moftransformer) (πŸ“₯ 780 / month Β· πŸ“¦ 1 Β· ⏱️ 20.06.2024): ``` pip install moftransformer ```
SchNetPack G-SchNet (πŸ₯ˆ13 Β· ⭐ 49) - G-SchNet extension for SchNetPack. MIT - [GitHub](https://github.com/atomistic-machine-learning/schnetpack-gschnet) (πŸ‘¨β€πŸ’» 3 Β· πŸ”€ 8 Β· ⏱️ 07.11.2024): ``` git clone https://github.com/atomistic-machine-learning/schnetpack-gschnet ```
SiMGen (πŸ₯ˆ9 Β· ⭐ 15 Β· πŸ’€) - Zero Shot Molecular Generation via Similarity Kernels. MIT viz - [GitHub](https://github.com/RokasEl/simgen) (πŸ‘¨β€πŸ’» 4 Β· πŸ”€ 2 Β· πŸ“¦ 2 Β· πŸ“‹ 4 - 25% open Β· ⏱️ 15.02.2024): ``` git clone https://github.com/RokasEl/simgen ``` - [PyPi](https://pypi.org/project/simgen) (πŸ“₯ 38 / month Β· ⏱️ 14.02.2024): ``` pip install simgen ```
COATI (πŸ₯‰5 Β· ⭐ 100 Β· πŸ’€) - COATI: multi-modal contrastive pre-training for representing and traversing chemical space. Apache-2 drug-discovery multimodal pretrained rep-learn - [GitHub](https://github.com/terraytherapeutics/COATI) (πŸ‘¨β€πŸ’» 5 Β· πŸ”€ 6 Β· πŸ“‹ 3 - 33% open Β· ⏱️ 23.03.2024): ``` git clone https://github.com/terraytherapeutics/COATI ```
Show 8 hidden projects... - synspace (πŸ₯ˆ13 Β· ⭐ 36 Β· πŸ’€) - Synthesis generative model. MIT - EDM (πŸ₯ˆ9 Β· ⭐ 440 Β· πŸ’€) - E(3) Equivariant Diffusion Model for Molecule Generation in 3D. MIT - G-SchNet (πŸ₯‰8 Β· ⭐ 130 Β· πŸ’€) - G-SchNet - a generative model for 3d molecular structures. MIT - bVAE-IM (πŸ₯‰8 Β· ⭐ 11 Β· πŸ’€) - Implementation of Chemical Design with GPU-based Ising Machine. MIT QML single-paper - cG-SchNet (πŸ₯‰7 Β· ⭐ 53 Β· πŸ’€) - cG-SchNet - a conditional generative neural network for 3d molecular structures. MIT - rxngenerator (πŸ₯‰6 Β· ⭐ 12 Β· πŸ’€) - A generative model for molecular generation via multi-step chemical reactions. MIT - MolSLEPA (πŸ₯‰5 Β· ⭐ 5 Β· πŸ’€) - Interpretable Fragment-based Molecule Design with Self-learning Entropic Population Annealing. MIT XAI - Mapping out phase diagrams with generative classifiers (πŸ₯‰4 Β· ⭐ 7 Β· πŸ’€) - Repository for our ``Mapping out phase diagrams with generative models paper. MIT phase-transition


Interatomic Potentials (ML-IAP)

Back to top

Machine learning interatomic potentials (aka ML-IAP, MLIAP, MLIP, MLP) and force fields (ML-FF) for molecular dynamics.

DeePMD-kit (πŸ₯‡28 Β· ⭐ 1.5K) - A deep learning package for many-body potential energy representation and molecular dynamics. LGPL-3.0 C++ - [GitHub](https://github.com/deepmodeling/deepmd-kit) (πŸ‘¨β€πŸ’» 70 Β· πŸ”€ 510 Β· πŸ“₯ 43K Β· πŸ“¦ 20 Β· πŸ“‹ 830 - 9% open Β· ⏱️ 19.11.2024): ``` git clone https://github.com/deepmodeling/deepmd-kit ``` - [PyPi](https://pypi.org/project/deepmd-kit) (πŸ“₯ 8.6K / month Β· πŸ“¦ 4 Β· ⏱️ 14.11.2024): ``` pip install deepmd-kit ``` - [Conda](https://anaconda.org/deepmodeling/deepmd-kit) (πŸ“₯ 1.5K Β· ⏱️ 06.04.2024): ``` conda install -c deepmodeling deepmd-kit ``` - [Docker Hub](https://hub.docker.com/r/deepmodeling/deepmd-kit) (πŸ“₯ 2.9K Β· ⭐ 1 Β· ⏱️ 15.11.2024): ``` docker pull deepmodeling/deepmd-kit ```
fairchem (πŸ₯‡24 Β· ⭐ 880) - FAIR Chemistrys library of machine learning methods for chemistry. Formerly known as Open Catalyst Project. MIT pretrained UIP rep-learn catalysis - [GitHub](https://github.com/FAIR-Chem/fairchem) (πŸ‘¨β€πŸ’» 42 Β· πŸ”€ 250 Β· πŸ“‹ 240 - 12% open Β· ⏱️ 19.11.2024): ``` git clone https://github.com/FAIR-Chem/fairchem ``` - [PyPi](https://pypi.org/project/fairchem-core) (πŸ“₯ 3.4K / month Β· πŸ“¦ 1 Β· ⏱️ 14.09.2024): ``` pip install fairchem-core ```
TorchANI (πŸ₯‡24 Β· ⭐ 460 Β· πŸ’€) - Accurate Neural Network Potential on PyTorch. MIT - [GitHub](https://github.com/aiqm/torchani) (πŸ‘¨β€πŸ’» 19 Β· πŸ”€ 130 Β· πŸ“¦ 45 Β· πŸ“‹ 170 - 13% open Β· ⏱️ 14.11.2023): ``` git clone https://github.com/aiqm/torchani ``` - [PyPi](https://pypi.org/project/torchani) (πŸ“₯ 3.8K / month Β· πŸ“¦ 4 Β· ⏱️ 14.11.2023): ``` pip install torchani ``` - [Conda](https://anaconda.org/conda-forge/torchani) (πŸ“₯ 560K Β· ⏱️ 13.11.2024): ``` conda install -c conda-forge torchani ```
NequIP (πŸ₯‡23 Β· ⭐ 640) - NequIP is a code for building E(3)-equivariant interatomic potentials. MIT - [GitHub](https://github.com/mir-group/nequip) (πŸ‘¨β€πŸ’» 12 Β· πŸ”€ 140 Β· πŸ“¦ 32 Β· πŸ“‹ 96 - 26% open Β· ⏱️ 14.11.2024): ``` git clone https://github.com/mir-group/nequip ``` - [PyPi](https://pypi.org/project/nequip) (πŸ“₯ 4.3K / month Β· πŸ“¦ 1 Β· ⏱️ 09.07.2024): ``` pip install nequip ``` - [Conda](https://anaconda.org/conda-forge/nequip) (πŸ“₯ 6.6K Β· ⏱️ 10.07.2024): ``` conda install -c conda-forge nequip ```
MACE (πŸ₯‡22 Β· ⭐ 550) - MACE - Fast and accurate machine learning interatomic potentials with higher order equivariant message passing. MIT - [GitHub](https://github.com/ACEsuit/mace) (πŸ‘¨β€πŸ’» 46 Β· πŸ”€ 200 Β· πŸ“‹ 300 - 22% open Β· ⏱️ 12.11.2024): ``` git clone https://github.com/ACEsuit/mace ```
GPUMD (πŸ₯‡22 Β· ⭐ 470) - GPUMD is a highly efficient general-purpose molecular dynamic (MD) package and enables machine-learned potentials.. GPL-3.0 MD C++ electrostatics - [GitHub](https://github.com/brucefan1983/GPUMD) (πŸ‘¨β€πŸ’» 38 Β· πŸ”€ 120 Β· πŸ“‹ 190 - 10% open Β· ⏱️ 21.11.2024): ``` git clone https://github.com/brucefan1983/GPUMD ```
DP-GEN (πŸ₯ˆ21 Β· ⭐ 310) - The deep potential generator to generate a deep-learning based model of interatomic potential energy and force field. LGPL-3.0 workflows - [GitHub](https://github.com/deepmodeling/dpgen) (πŸ‘¨β€πŸ’» 65 Β· πŸ”€ 170 Β· πŸ“₯ 1.8K Β· πŸ“¦ 7 Β· πŸ“‹ 300 - 11% open Β· ⏱️ 04.11.2024): ``` git clone https://github.com/deepmodeling/dpgen ``` - [PyPi](https://pypi.org/project/dpgen) (πŸ“₯ 1.3K / month Β· πŸ“¦ 1 Β· ⏱️ 10.04.2024): ``` pip install dpgen ``` - [Conda](https://anaconda.org/deepmodeling/dpgen) (πŸ“₯ 210 Β· ⏱️ 16.06.2023): ``` conda install -c deepmodeling dpgen ```
TorchMD-NET (πŸ₯ˆ20 Β· ⭐ 340) - Training neural network potentials. MIT MD rep-learn transformer pretrained - [GitHub](https://github.com/torchmd/torchmd-net) (πŸ‘¨β€πŸ’» 16 Β· πŸ”€ 72 Β· πŸ“‹ 120 - 28% open Β· ⏱️ 28.08.2024): ``` git clone https://github.com/torchmd/torchmd-net ``` - [Conda](https://anaconda.org/conda-forge/torchmd-net) (πŸ“₯ 220K Β· ⏱️ 15.11.2024): ``` conda install -c conda-forge torchmd-net ```
apax (πŸ₯ˆ19 Β· ⭐ 18 Β· πŸ“‰) - A flexible and performant framework for training machine learning potentials. MIT - [GitHub](https://github.com/apax-hub/apax) (πŸ‘¨β€πŸ’» 8 Β· πŸ”€ 3 Β· πŸ“¦ 3 Β· πŸ“‹ 130 - 11% open Β· ⏱️ 19.11.2024): ``` git clone https://github.com/apax-hub/apax ``` - [PyPi](https://pypi.org/project/apax) (πŸ“₯ 1K / month Β· ⏱️ 17.09.2024): ``` pip install apax ```
KLIFF (πŸ₯ˆ16 Β· ⭐ 34) - KIM-based Learning-Integrated Fitting Framework for interatomic potentials. LGPL-2.1 probabilistic workflows - [GitHub](https://github.com/openkim/kliff) (πŸ‘¨β€πŸ’» 9 Β· πŸ”€ 19 Β· πŸ“¦ 4 Β· πŸ“‹ 42 - 54% open Β· ⏱️ 08.10.2024): ``` git clone https://github.com/openkim/kliff ``` - [PyPi](https://pypi.org/project/kliff) (πŸ“₯ 380 / month Β· ⏱️ 17.12.2023): ``` pip install kliff ``` - [Conda](https://anaconda.org/conda-forge/kliff) (πŸ“₯ 120K Β· ⏱️ 10.09.2024): ``` conda install -c conda-forge kliff ```
Neural Force Field (πŸ₯ˆ15 Β· ⭐ 240) - Neural Network Force Field based on PyTorch. MIT pretrained - [GitHub](https://github.com/learningmatter-mit/NeuralForceField) (πŸ‘¨β€πŸ’» 41 Β· πŸ”€ 49 Β· πŸ“‹ 20 - 10% open Β· ⏱️ 24.09.2024): ``` git clone https://github.com/learningmatter-mit/NeuralForceField ```
PyXtalFF (πŸ₯ˆ15 Β· ⭐ 86 Β· πŸ’€) - Machine Learning Interatomic Potential Predictions. MIT - [GitHub](https://github.com/MaterSim/PyXtal_FF) (πŸ‘¨β€πŸ’» 9 Β· πŸ”€ 23 Β· πŸ“‹ 63 - 19% open Β· ⏱️ 07.01.2024): ``` git clone https://github.com/MaterSim/PyXtal_FF ``` - [PyPi](https://pypi.org/project/pyxtal_ff) (πŸ“₯ 400 / month Β· ⏱️ 21.12.2022): ``` pip install pyxtal_ff ```
NNPOps (πŸ₯ˆ15 Β· ⭐ 83) - High-performance operations for neural network potentials. MIT MD C++ - [GitHub](https://github.com/openmm/NNPOps) (πŸ‘¨β€πŸ’» 9 Β· πŸ”€ 18 Β· πŸ“‹ 57 - 38% open Β· ⏱️ 10.07.2024): ``` git clone https://github.com/openmm/NNPOps ``` - [Conda](https://anaconda.org/conda-forge/nnpops) (πŸ“₯ 280K Β· ⏱️ 14.11.2024): ``` conda install -c conda-forge nnpops ```
Pacemaker (πŸ₯ˆ14 Β· ⭐ 72) - Python package for fitting atomic cluster expansion (ACE) potentials. Custom - [GitHub](https://github.com/ICAMS/python-ace) (πŸ‘¨β€πŸ’» 7 Β· πŸ”€ 19 Β· πŸ“‹ 58 - 34% open Β· ⏱️ 20.11.2024): ``` git clone https://github.com/ICAMS/python-ace ``` - [PyPi](https://pypi.org/project/python-ace) (πŸ“₯ 21 / month Β· ⏱️ 24.10.2022): ``` pip install python-ace ```
Ultra-Fast Force Fields (UF3) (πŸ₯ˆ14 Β· ⭐ 61) - UF3: a python library for generating ultra-fast interatomic potentials. Apache-2 - [GitHub](https://github.com/uf3/uf3) (πŸ‘¨β€πŸ’» 10 Β· πŸ”€ 20 Β· πŸ“¦ 2 Β· πŸ“‹ 50 - 38% open Β· ⏱️ 04.10.2024): ``` git clone https://github.com/uf3/uf3 ``` - [PyPi](https://pypi.org/project/uf3) (πŸ“₯ 79 / month Β· ⏱️ 27.10.2023): ``` pip install uf3 ```
wfl (πŸ₯ˆ14 Β· ⭐ 36) - Workflow is a Python toolkit for building interatomic potential creation and atomistic simulation workflows. GPL-2.0 workflows HTC - [GitHub](https://github.com/libAtoms/workflow) (πŸ‘¨β€πŸ’» 19 Β· πŸ”€ 18 Β· πŸ“¦ 2 Β· πŸ“‹ 160 - 41% open Β· ⏱️ 01.11.2024): ``` git clone https://github.com/libAtoms/workflow ```
DMFF (πŸ₯ˆ13 Β· ⭐ 160 Β· πŸ’€) - DMFF (Differentiable Molecular Force Field) is a Jax-based python package that provides a full differentiable.. LGPL-3.0 - [GitHub](https://github.com/deepmodeling/DMFF) (πŸ‘¨β€πŸ’» 14 Β· πŸ”€ 42 Β· πŸ“‹ 26 - 38% open Β· ⏱️ 12.01.2024): ``` git clone https://github.com/deepmodeling/DMFF ```
So3krates (MLFF) (πŸ₯ˆ13 Β· ⭐ 91 Β· πŸ“‰) - Build neural networks for machine learning force fields with JAX. MIT - [GitHub](https://github.com/thorben-frank/mlff) (πŸ‘¨β€πŸ’» 4 Β· πŸ”€ 19 Β· πŸ“‹ 10 - 40% open Β· ⏱️ 23.08.2024): ``` git clone https://github.com/thorben-frank/mlff ```
calorine (πŸ₯ˆ13 Β· ⭐ 13) - A Python package for constructing and sampling neuroevolution potential models. https://doi.org/10.21105/joss.06264. Custom - [PyPi](https://pypi.org/project/calorine) (πŸ“₯ 2.7K / month Β· πŸ“¦ 4 Β· ⏱️ 25.10.2024): ``` pip install calorine ``` - [GitLab](https://gitlab.com/materials-modeling/calorine) (πŸ”€ 4 Β· πŸ“‹ 87 - 2% open Β· ⏱️ 25.10.2024): ``` git clone https://gitlab.com/materials-modeling/calorine ```
ANI-1 (πŸ₯ˆ12 Β· ⭐ 220 Β· πŸ’€) - ANI-1 neural net potential with python interface (ASE). MIT - [GitHub](https://github.com/isayev/ASE_ANI) (πŸ‘¨β€πŸ’» 6 Β· πŸ”€ 55 Β· πŸ“‹ 37 - 43% open Β· ⏱️ 11.03.2024): ``` git clone https://github.com/isayev/ASE_ANI ```
PiNN (πŸ₯ˆ12 Β· ⭐ 110) - A Python library for building atomic neural networks. BSD-3 - [GitHub](https://github.com/Teoroo-CMC/PiNN) (πŸ‘¨β€πŸ’» 5 Β· πŸ”€ 33 Β· πŸ“‹ 7 - 14% open Β· ⏱️ 27.06.2024): ``` git clone https://github.com/Teoroo-CMC/PiNN ``` - [Docker Hub](https://hub.docker.com/r/teoroo/pinn) (πŸ“₯ 250 Β· ⏱️ 27.06.2024): ``` docker pull teoroo/pinn ```
CCS_fit (πŸ₯ˆ12 Β· ⭐ 8 Β· πŸ’€) - Curvature Constrained Splines. GPL-3.0 - [GitHub](https://github.com/Teoroo-CMC/CCS) (πŸ‘¨β€πŸ’» 8 Β· πŸ”€ 11 Β· πŸ“₯ 660 Β· πŸ“‹ 14 - 57% open Β· ⏱️ 16.02.2024): ``` git clone https://github.com/Teoroo-CMC/CCS ``` - [PyPi](https://pypi.org/project/ccs_fit) (πŸ“₯ 6.5K / month Β· ⏱️ 16.02.2024): ``` pip install ccs_fit ```
tinker-hp (πŸ₯ˆ11 Β· ⭐ 81) - Tinker-HP: High-Performance Massively Parallel Evolution of Tinker on CPUs & GPUs. Custom - [GitHub](https://github.com/TinkerTools/tinker-hp) (πŸ‘¨β€πŸ’» 12 Β· πŸ”€ 22 Β· πŸ“‹ 21 - 19% open Β· ⏱️ 26.10.2024): ``` git clone https://github.com/TinkerTools/tinker-hp ```
ACEfit (πŸ₯ˆ11 Β· ⭐ 7) - MIT Julia - [GitHub](https://github.com/ACEsuit/ACEfit.jl) (πŸ‘¨β€πŸ’» 8 Β· πŸ”€ 7 Β· πŸ“‹ 57 - 38% open Β· ⏱️ 14.09.2024): ``` git clone https://github.com/ACEsuit/ACEfit.jl ```
Allegro (πŸ₯‰10 Β· ⭐ 350 Β· πŸ“ˆ) - Allegro is an open-source code for building highly scalable and accurate equivariant deep learning interatomic.. MIT - [GitHub](https://github.com/mir-group/allegro) (πŸ‘¨β€πŸ’» 2 Β· πŸ”€ 45 Β· πŸ“‹ 39 - 61% open Β· ⏱️ 14.11.2024): ``` git clone https://github.com/mir-group/allegro ```
PyNEP (πŸ₯‰10 Β· ⭐ 49) - A python interface of the machine learning potential NEP used in GPUMD. MIT - [GitHub](https://github.com/bigd4/PyNEP) (πŸ‘¨β€πŸ’» 7 Β· πŸ”€ 16 Β· πŸ“‹ 11 - 36% open Β· ⏱️ 01.06.2024): ``` git clone https://github.com/bigd4/PyNEP ```
ACE1.jl (πŸ₯‰9 Β· ⭐ 20) - Atomic Cluster Expansion for Modelling Invariant Atomic Properties. Custom Julia - [GitHub](https://github.com/ACEsuit/ACE1.jl) (πŸ‘¨β€πŸ’» 9 Β· πŸ”€ 7 Β· πŸ“‹ 46 - 47% open Β· ⏱️ 11.09.2024): ``` git clone https://github.com/ACEsuit/ACE1.jl ```
Point Edge Transformer (PET) (πŸ₯‰9 Β· ⭐ 19) - Point Edge Transformer. MIT rep-learn transformer - [GitHub](https://github.com/spozdn/pet) (πŸ‘¨β€πŸ’» 7 Β· πŸ”€ 5 Β· ⏱️ 02.07.2024): ``` git clone https://github.com/spozdn/pet ```
ACE.jl (πŸ₯‰8 Β· ⭐ 65) - Parameterisation of Equivariant Properties of Particle Systems. Custom Julia - [GitHub](https://github.com/ACEsuit/ACE.jl) (πŸ‘¨β€πŸ’» 12 Β· πŸ”€ 15 Β· πŸ“‹ 82 - 29% open Β· ⏱️ 31.08.2024): ``` git clone https://github.com/ACEsuit/ACE.jl ```
SIMPLE-NN v2 (πŸ₯‰8 Β· ⭐ 41 Β· πŸ’€) - SIMPLE-NN is an open package that constructs Behler-Parrinello-type neural-network interatomic potentials from ab.. GPL-3.0 - [GitHub](https://github.com/MDIL-SNU/SIMPLE-NN_v2) (πŸ‘¨β€πŸ’» 13 Β· πŸ”€ 18 Β· πŸ“‹ 13 - 30% open Β· ⏱️ 29.12.2023): ``` git clone https://github.com/MDIL-SNU/SIMPLE-NN_v2 ```
GAP (πŸ₯‰8 Β· ⭐ 40) - Gaussian Approximation Potential (GAP). Custom - [GitHub](https://github.com/libAtoms/GAP) (πŸ‘¨β€πŸ’» 13 Β· πŸ”€ 20 Β· ⏱️ 17.08.2024): ``` git clone https://github.com/libAtoms/GAP ```
ALF (πŸ₯‰8 Β· ⭐ 31) - A framework for performing active learning for training machine-learned interatomic potentials. Custom active-learning - [GitHub](https://github.com/lanl/ALF) (πŸ‘¨β€πŸ’» 5 Β· πŸ”€ 12 Β· ⏱️ 04.11.2024): ``` git clone https://github.com/lanl/alf ```
TurboGAP (πŸ₯‰8 Β· ⭐ 16) - The TurboGAP code. Custom Fortran - [GitHub](https://github.com/mcaroba/turbogap) (πŸ‘¨β€πŸ’» 8 Β· πŸ”€ 9 Β· πŸ“‹ 11 - 72% open Β· ⏱️ 14.11.2024): ``` git clone https://github.com/mcaroba/turbogap ```
TensorPotential (πŸ₯‰6 Β· ⭐ 10) - Tensorpotential is a TensorFlow based tool for development, fitting ML interatomic potentials from electronic.. Custom - [GitHub](https://github.com/ICAMS/TensorPotential) (πŸ‘¨β€πŸ’» 4 Β· πŸ”€ 4 Β· ⏱️ 12.09.2024): ``` git clone https://github.com/ICAMS/TensorPotential ```
MLXDM (πŸ₯‰6 Β· ⭐ 7) - A Neural Network Potential with Rigorous Treatment of Long-Range Dispersion https://doi.org/10.1039/D2DD00150K. MIT long-range - [GitHub](https://github.com/RowleyGroup/MLXDM) (πŸ‘¨β€πŸ’» 7 Β· πŸ”€ 2 Β· ⏱️ 15.08.2024): ``` git clone https://github.com/RowleyGroup/MLXDM ```
Show 35 hidden projects... - MEGNet (πŸ₯‡23 Β· ⭐ 510 Β· πŸ’€) - Graph Networks as a Universal Machine Learning Framework for Molecules and Crystals. BSD-3 multifidelity - sGDML (πŸ₯ˆ16 Β· ⭐ 140 Β· πŸ’€) - sGDML - Reference implementation of the Symmetric Gradient Domain Machine Learning model. MIT - n2p2 (πŸ₯ˆ14 Β· ⭐ 220 Β· πŸ’€) - n2p2 - A Neural Network Potential Package. GPL-3.0 C++ - TensorMol (πŸ₯ˆ12 Β· ⭐ 270 Β· πŸ’€) - Tensorflow + Molecules = TensorMol. GPL-3.0 single-paper - SIMPLE-NN (πŸ₯ˆ11 Β· ⭐ 47 Β· πŸ’€) - SIMPLE-NN(SNU Interatomic Machine-learning PotentiaL packagE version Neural Network). GPL-3.0 - NNsforMD (πŸ₯‰10 Β· ⭐ 10 Β· πŸ’€) - Neural network class for molecular dynamics to predict potential energy, forces and non-adiabatic couplings. MIT - DimeNet (πŸ₯‰9 Β· ⭐ 300 Β· πŸ’€) - DimeNet and DimeNet++ models, as proposed in Directional Message Passing for Molecular Graphs (ICLR 2020) and Fast and.. Custom - SchNet (πŸ₯‰9 Β· ⭐ 230 Β· πŸ’€) - SchNet - a deep learning architecture for quantum chemistry. MIT - GemNet (πŸ₯‰9 Β· ⭐ 180 Β· πŸ’€) - GemNet model in PyTorch, as proposed in GemNet: Universal Directional Graph Neural Networks for Molecules (NeurIPS.. Custom - Asparagus (πŸ₯‰9 Β· ⭐ 4 Β· 🐣) - Program Package for Sampling, Training and Applying ML-based Potential models https://doi.org/10.48550/arXiv.2407.15175. MIT workflows sampling MD - AIMNet (πŸ₯‰8 Β· ⭐ 98 Β· πŸ’€) - Atoms In Molecules Neural Network Potential. MIT single-paper - MACE-Jax (πŸ₯‰8 Β· ⭐ 62 Β· πŸ’€) - Equivariant machine learning interatomic potentials in JAX. MIT - SNAP (πŸ₯‰8 Β· ⭐ 37 Β· πŸ’€) - Repository for spectral neighbor analysis potential (SNAP) model development. BSD-3 - Atomistic Adversarial Attacks (πŸ₯‰8 Β· ⭐ 32 Β· πŸ’€) - Code for performing adversarial attacks on atomistic systems using NN potentials. MIT probabilistic - MEGNetSparse (πŸ₯‰8 Β· ⭐ 1) - A library imlementing a graph neural network with sparse representation from Code for Kazeev, N., Al-Maeeni, A.R.,.. MIT material-defect - PhysNet (πŸ₯‰7 Β· ⭐ 91 Β· πŸ’€) - Code for training PhysNet models. MIT electrostatics - MLIP-3 (πŸ₯‰6 Β· ⭐ 26 Β· πŸ’€) - MLIP-3: Active learning on atomic environments with Moment Tensor Potentials (MTP). BSD-2 C++ - testing-framework (πŸ₯‰6 Β· ⭐ 11 Β· πŸ’€) - The purpose of this repository is to aid the testing of a large number of interatomic potentials for a variety of.. Unlicensed benchmarking - PANNA (πŸ₯‰6 Β· ⭐ 10 Β· πŸ’€) - A package to train and validate all-to-all connected network models for BP[1] and modified-BP[2] type local atomic.. MIT benchmarking - GN-MM (πŸ₯‰5 Β· ⭐ 10 Β· πŸ’€) - The Gaussian Moment Neural Network (GM-NN) package developed for large-scale atomistic simulations employing atomistic.. MIT active-learning MD rep-eng magnetism - Alchemical learning (πŸ₯‰5 Β· ⭐ 2 Β· πŸ’€) - Code for the Modeling high-entropy transition metal alloys with alchemical compression article. BSD-3 - ACE1Pack.jl (πŸ₯‰5 Β· ⭐ 1 Β· πŸ’€) - Provides convenience functionality for the usage of ACE1.jl, ACEfit.jl, JuLIP.jl for fitting interatomic potentials.. MIT Julia - Allegro-Legato (πŸ₯‰4 Β· ⭐ 19 Β· πŸ’€) - An extension of Allegro with enhanced robustness and time-to-failure. MIT MD - glp (πŸ₯‰4 Β· ⭐ 18 Β· πŸ’€) - tools for graph-based machine-learning potentials in jax. MIT - NequIP-JAX (πŸ₯‰4 Β· ⭐ 18 Β· πŸ’€) - JAX implementation of the NequIP interatomic potential. Unlicensed - ACE Workflows (πŸ₯‰4 Β· πŸ’€) - Workflow Examples for ACE Models. Unlicensed Julia workflows - PeriodicPotentials (πŸ₯‰4 Β· πŸ’€) - A Periodic table app that displays potentials based on the selected elements. MIT community-resource viz JavaScript - PyFLAME (πŸ₯‰3 Β· πŸ’€) - An automated approach for developing neural network interatomic potentials with FLAME.. Unlicensed active-learning structure-prediction structure-optimization rep-eng Fortran - SingleNN (πŸ₯‰2 Β· ⭐ 9 Β· πŸ’€) - An efficient package for training and executing neural-network interatomic potentials. Unlicensed C++ - AisNet (πŸ₯‰2 Β· ⭐ 3 Β· πŸ’€) - A Universal Interatomic Potential Neural Network with Encoded Local Environment Features.. MIT - RuNNer (πŸ₯‰2) - The RuNNer Neural Network Energy Representation is a Fortran-based framework for the construction of Behler-.. GPL-3.0 Fortran - Allegro-JAX (πŸ₯‰1 Β· ⭐ 21 Β· πŸ’€) - JAX implementation of the Allegro interatomic potential. Unlicensed - nnp-pre-training (πŸ₯‰1 Β· ⭐ 6 Β· πŸ’€) - Synthetic pre-training for neural-network interatomic potentials. Unlicensed pretrained MD - mag-ace (πŸ₯‰1 Β· ⭐ 2 Β· πŸ’€) - Magnetic ACE potential. FORTRAN interface for LAMMPS SPIN package. Unlicensed magnetism MD Fortran - mlp (πŸ₯‰1 Β· ⭐ 1 Β· πŸ’€) - Proper orthogonal descriptors for efficient and accurate interatomic potentials... Unlicensed Julia


Language Models

Back to top

Projects that use (large) language models (LMs, LLMs) or natural language procesing (NLP) techniques for atomistic ML.

paper-qa (πŸ₯‡31 Β· ⭐ 6.4K) - High accuracy RAG for answering questions from scientific documents with citations. Apache-2 ai-agent - [GitHub](https://github.com/Future-House/paper-qa) (πŸ‘¨β€πŸ’» 27 Β· πŸ”€ 610 Β· πŸ“¦ 81 Β· πŸ“‹ 270 - 42% open Β· ⏱️ 20.11.2024): ``` git clone https://github.com/whitead/paper-qa ``` - [PyPi](https://pypi.org/project/paper-qa) (πŸ“₯ 23K / month Β· πŸ“¦ 10 Β· ⏱️ 20.11.2024): ``` pip install paper-qa ```
OpenBioML ChemNLP (πŸ₯‡17 Β· ⭐ 150) - ChemNLP project. MIT datasets - [GitHub](https://github.com/OpenBioML/chemnlp) (πŸ‘¨β€πŸ’» 27 Β· πŸ”€ 46 Β· πŸ“‹ 250 - 44% open Β· ⏱️ 19.08.2024): ``` git clone https://github.com/OpenBioML/chemnlp ``` - [PyPi](https://pypi.org/project/chemnlp) (πŸ“₯ 380 / month Β· πŸ“¦ 1 Β· ⏱️ 07.08.2023): ``` pip install chemnlp ```
ChemCrow (πŸ₯‡16 Β· ⭐ 630 Β· πŸ’€) - Open source package for the accurate solution of reasoning-intensive chemical tasks. MIT ai-agent - [GitHub](https://github.com/ur-whitelab/chemcrow-public) (πŸ‘¨β€πŸ’» 3 Β· πŸ”€ 91 Β· πŸ“¦ 6 Β· πŸ“‹ 22 - 36% open Β· ⏱️ 27.03.2024): ``` git clone https://github.com/ur-whitelab/chemcrow-public ``` - [PyPi](https://pypi.org/project/chemcrow) (πŸ“₯ 1.8K / month Β· ⏱️ 27.03.2024): ``` pip install chemcrow ```
ChatMOF (πŸ₯ˆ13 Β· ⭐ 64) - Predict and Inverse design for metal-organic framework with large-language models (llms). MIT generative - [GitHub](https://github.com/Yeonghun1675/ChatMOF) (πŸ‘¨β€πŸ’» 1 Β· πŸ”€ 10 Β· πŸ“¦ 3 Β· ⏱️ 01.07.2024): ``` git clone https://github.com/Yeonghun1675/ChatMOF ``` - [PyPi](https://pypi.org/project/chatmof) (πŸ“₯ 1.3K / month Β· ⏱️ 01.07.2024): ``` pip install chatmof ```
AtomGPT (πŸ₯ˆ13 Β· ⭐ 31) - AtomGPT: Atomistic Generative Pretrained Transformer for Forward and Inverse Materials Design.. Custom generative pretrained transformer - [GitHub](https://github.com/usnistgov/atomgpt) (πŸ‘¨β€πŸ’» 2 Β· πŸ”€ 5 Β· πŸ“¦ 2 Β· ⏱️ 04.10.2024): ``` git clone https://github.com/usnistgov/atomgpt ``` - [PyPi](https://pypi.org/project/atomgpt) (πŸ“₯ 500 / month Β· ⏱️ 22.09.2024): ``` pip install atomgpt ```
NIST ChemNLP (πŸ₯ˆ12 Β· ⭐ 73) - ChemNLP: A Natural Language Processing based Library for Materials Chemistry Text Data. MIT literature-data - [GitHub](https://github.com/usnistgov/chemnlp) (πŸ‘¨β€πŸ’» 2 Β· πŸ”€ 16 Β· πŸ“¦ 4 Β· ⏱️ 19.08.2024): ``` git clone https://github.com/usnistgov/chemnlp ``` - [PyPi](https://pypi.org/project/chemnlp) (πŸ“₯ 380 / month Β· πŸ“¦ 1 Β· ⏱️ 07.08.2023): ``` pip install chemnlp ```
LLaMP (πŸ₯‰8 Β· ⭐ 65) - A web app and Python API for multi-modal RAG framework to ground LLMs on high-fidelity materials informatics. An.. BSD-3 materials-discovery cheminformatics generative MD multimodal language-models Python general-tool - [GitHub](https://github.com/chiang-yuan/llamp) (πŸ‘¨β€πŸ’» 6 Β· πŸ”€ 10 Β· πŸ“‹ 25 - 32% open Β· ⏱️ 14.10.2024): ``` git clone https://github.com/chiang-yuan/llamp ```
LLM-Prop (πŸ₯‰7 Β· ⭐ 28 Β· πŸ’€) - A repository for the LLM-Prop implementation. MIT - [GitHub](https://github.com/vertaix/LLM-Prop) (πŸ‘¨β€πŸ’» 6 Β· πŸ”€ 6 Β· πŸ“‹ 2 - 50% open Β· ⏱️ 26.04.2024): ``` git clone https://github.com/vertaix/LLM-Prop ```
crystal-text-llm (πŸ₯‰5 Β· ⭐ 81) - Large language models to generate stable crystals. CC-BY-NC-4.0 materials-discovery - [GitHub](https://github.com/facebookresearch/crystal-text-llm) (πŸ‘¨β€πŸ’» 3 Β· πŸ”€ 14 Β· πŸ“‹ 11 - 81% open Β· ⏱️ 18.06.2024): ``` git clone https://github.com/facebookresearch/crystal-text-llm ```
SciBot (πŸ₯‰5 Β· ⭐ 29) - SciBot is a simple demo of building a domain-specific chatbot for science. Unlicensed ai-agent - [GitHub](https://github.com/CFN-softbio/SciBot) (πŸ‘¨β€πŸ’» 1 Β· πŸ”€ 9 Β· πŸ“¦ 2 Β· ⏱️ 03.09.2024): ``` git clone https://github.com/CFN-softbio/SciBot ```
MAPI_LLM (πŸ₯‰5 Β· ⭐ 9 Β· πŸ’€) - A LLM application developed during the LLM March MADNESS Hackathon https://doi.org/10.1039/D3DD00113J. MIT ai-agent dataset - [GitHub](https://github.com/maykcaldas/MAPI_LLM) (πŸ‘¨β€πŸ’» 2 Β· πŸ”€ 2 Β· ⏱️ 11.04.2024): ``` git clone https://github.com/maykcaldas/MAPI_LLM ```
Cephalo (πŸ₯‰5 Β· ⭐ 6 Β· 🐣) - Multimodal Vision-Language Models for Bio-Inspired Materials Analysis and Design. Apache-2 generative multimodal pretrained - [GitHub](https://github.com/lamm-mit/Cephalo) (πŸ”€ 1 Β· ⏱️ 23.07.2024): ``` git clone https://github.com/lamm-mit/Cephalo ```
Show 10 hidden projects... - ChemDataExtractor (πŸ₯‡16 Β· ⭐ 310 Β· πŸ’€) - Automatically extract chemical information from scientific documents. MIT literature-data - gptchem (πŸ₯ˆ13 Β· ⭐ 230 Β· πŸ’€) - Use GPT-3 to solve chemistry problems. MIT - mat2vec (πŸ₯ˆ12 Β· ⭐ 620 Β· πŸ’€) - Supplementary Materials for Tshitoyan et al. Unsupervised word embeddings capture latent knowledge from materials.. MIT rep-learn - nlcc (πŸ₯ˆ12 Β· ⭐ 44 Β· πŸ’€) - Natural language computational chemistry command line interface. MIT single-paper - MoLFormer (πŸ₯‰9 Β· ⭐ 270 Β· πŸ’€) - Repository for MolFormer. Apache-2 transformer pretrained drug-discovery - MolSkill (πŸ₯‰9 Β· ⭐ 100 Β· πŸ’€) - Extracting medicinal chemistry intuition via preference machine learning. MIT drug-discovery recommender - chemlift (πŸ₯‰7 Β· ⭐ 32 Β· πŸ’€) - Language-interfaced fine-tuning for chemistry. MIT - BERT-PSIE-TC (πŸ₯‰5 Β· ⭐ 12 Β· πŸ’€) - A dataset of Curie temperatures automatically extracted from scientific literature with the use of the BERT-PSIE.. MIT magnetism - CatBERTa (πŸ₯‰4 Β· ⭐ 22 Β· πŸ’€) - Large Language Model for Catalyst Property Prediction. Unlicensed transformer catalysis - ChemDataWriter (πŸ₯‰4 Β· ⭐ 14 Β· πŸ’€) - ChemDataWriter is a transformer-based library for automatically generating research books in the chemistry area. MIT literature-data


Materials Discovery

Back to top

Projects that implement materials discovery methods using atomistic ML.

πŸ”— MatterGen - A generative model for inorganic materials design https://doi.org/10.48550/arXiv.2312.03687. generative proprietary

BOSS (πŸ₯‡15 Β· ⭐ 21 Β· πŸ“ˆ) - Bayesian Optimization Structure Search (BOSS). Apache-2 probabilistic - [PyPi](https://pypi.org/project/aalto-boss) (πŸ“₯ 15K / month Β· ⏱️ 13.11.2024): ``` pip install aalto-boss ``` - [GitLab](https://gitlab.com/cest-group/boss) (πŸ”€ 11 Β· πŸ“‹ 31 - 6% open Β· ⏱️ 13.11.2024): ``` git clone https://gitlab.com/cest-group/boss ```
aviary (πŸ₯‡14 Β· ⭐ 48) - The Wren sits on its Roost in the Aviary. MIT - [GitHub](https://github.com/CompRhys/aviary) (πŸ‘¨β€πŸ’» 4 Β· πŸ”€ 12 Β· πŸ“‹ 29 - 13% open Β· ⏱️ 09.11.2024): ``` git clone https://github.com/CompRhys/aviary ```
AGOX (πŸ₯ˆ11 Β· ⭐ 13) - AGOX is a package for global optimization of atomic system using e.g. the energy calculated from density functional.. GPL-3.0 structure-optimization - [PyPi](https://pypi.org/project/agox) (πŸ“₯ 1.2K / month Β· ⏱️ 23.10.2024): ``` pip install agox ``` - [GitLab](https://gitlab.com/agox/agox) (πŸ”€ 5 Β· πŸ“‹ 26 - 42% open Β· ⏱️ 23.10.2024): ``` git clone https://gitlab.com/agox/agox ```
Materials Discovery: GNoME (πŸ₯ˆ10 Β· ⭐ 890) - Graph Networks for Materials Science (GNoME) and dataset of 381,000 novel stable materials. Apache-2 UIP datasets rep-learn proprietary - [GitHub](https://github.com/google-deepmind/materials_discovery) (πŸ‘¨β€πŸ’» 2 Β· πŸ”€ 140 Β· πŸ“‹ 22 - 81% open Β· ⏱️ 19.11.2024): ``` git clone https://github.com/google-deepmind/materials_discovery ```
CSPML (crystal structure prediction with machine learning-based element substitution) (πŸ₯‰5 Β· ⭐ 21) - Original implementation of CSPML. MIT structure-prediction - [GitHub](https://github.com/Minoru938/CSPML) (πŸ‘¨β€πŸ’» 1 Β· πŸ”€ 8 Β· πŸ“‹ 3 - 66% open Β· ⏱️ 25.09.2024): ``` git clone https://github.com/minoru938/cspml ```
Show 6 hidden projects... - Computational Autonomy for Materials Discovery (CAMD) (πŸ₯ˆ6 Β· ⭐ 1 Β· πŸ’€) - Agent-based sequential learning software for materials discovery. Apache-2 - MAGUS (πŸ₯‰4 Β· ⭐ 62 Β· πŸ’€) - Machine learning And Graph theory assisted Universal structure Searcher. Unlicensed structure-prediction active-learning - ML-atomate (πŸ₯‰4 Β· ⭐ 4 Β· πŸ’€) - Machine learning-assisted Atomate code for autonomous computational materials screening. GPL-3.0 active-learning workflows - closed-loop-acceleration-benchmarks (πŸ₯‰4 Β· πŸ’€) - Data and scripts in support of the publication By how much can closed-loop frameworks accelerate computational.. MIT materials-discovery active-learning single-paper - SPINNER (πŸ₯‰3 Β· ⭐ 12 Β· πŸ’€) - SPINNER (Structure Prediction of Inorganic crystals using Neural Network potentials with Evolutionary and Random.. GPL-3.0 C++ structure-prediction - sl_discovery (πŸ₯‰3 Β· ⭐ 5 Β· πŸ’€) - Data processing and models related to Quantifying the performance of machine learning models in materials discovery. Apache-2 materials-discovery single-paper


Mathematical tools

Back to top

Projects that implement mathematical objects used in atomistic machine learning.

KFAC-JAX (πŸ₯‡19 Β· ⭐ 250) - Second Order Optimization and Curvature Estimation with K-FAC in JAX. Apache-2 - [GitHub](https://github.com/google-deepmind/kfac-jax) (πŸ‘¨β€πŸ’» 17 Β· πŸ”€ 22 Β· πŸ“¦ 11 Β· πŸ“‹ 19 - 47% open Β· ⏱️ 19.11.2024): ``` git clone https://github.com/google-deepmind/kfac-jax ``` - [PyPi](https://pypi.org/project/kfac-jax) (πŸ“₯ 1.1K / month Β· πŸ“¦ 1 Β· ⏱️ 04.04.2024): ``` pip install kfac-jax ```
gpax (πŸ₯‡18 Β· ⭐ 210) - Gaussian Processes for Experimental Sciences. MIT probabilistic active-learning - [GitHub](https://github.com/ziatdinovmax/gpax) (πŸ‘¨β€πŸ’» 6 Β· πŸ”€ 26 Β· πŸ“¦ 3 Β· πŸ“‹ 40 - 20% open Β· ⏱️ 21.05.2024): ``` git clone https://github.com/ziatdinovmax/gpax ``` - [PyPi](https://pypi.org/project/gpax) (πŸ“₯ 780 / month Β· ⏱️ 20.03.2024): ``` pip install gpax ```
SpheriCart (πŸ₯ˆ17 Β· ⭐ 73) - Multi-language library for the calculation of spherical harmonics in Cartesian coordinates. MIT - [GitHub](https://github.com/lab-cosmo/sphericart) (πŸ‘¨β€πŸ’» 11 Β· πŸ”€ 12 Β· πŸ“₯ 98 Β· πŸ“¦ 5 Β· πŸ“‹ 41 - 56% open Β· ⏱️ 07.11.2024): ``` git clone https://github.com/lab-cosmo/sphericart ``` - [PyPi](https://pypi.org/project/sphericart) (πŸ“₯ 1K / month Β· ⏱️ 04.09.2024): ``` pip install sphericart ```
Polynomials4ML.jl (πŸ₯ˆ13 Β· ⭐ 12) - Polynomials for ML: fast evaluation, batching, differentiation. MIT Julia - [GitHub](https://github.com/ACEsuit/Polynomials4ML.jl) (πŸ‘¨β€πŸ’» 10 Β· πŸ”€ 5 Β· πŸ“‹ 51 - 33% open Β· ⏱️ 22.06.2024): ``` git clone https://github.com/ACEsuit/Polynomials4ML.jl ```
GElib (πŸ₯ˆ9 Β· ⭐ 19) - C++/CUDA library for SO(3) equivariant operations. MPL-2.0 C++ - [GitHub](https://github.com/risi-kondor/GElib) (πŸ‘¨β€πŸ’» 4 Β· πŸ”€ 3 Β· πŸ“‹ 8 - 50% open Β· ⏱️ 27.07.2024): ``` git clone https://github.com/risi-kondor/GElib ```
COSMO Toolbox (πŸ₯‰6 Β· ⭐ 7 Β· πŸ’€) - Assorted libraries and utilities for atomistic simulation analysis. Unlicensed C++ - [GitHub](https://github.com/lab-cosmo/toolbox) (πŸ‘¨β€πŸ’» 9 Β· πŸ”€ 7 Β· ⏱️ 19.03.2024): ``` git clone https://github.com/lab-cosmo/toolbox ```
Show 5 hidden projects... - lie-nn (πŸ₯ˆ9 Β· ⭐ 26 Β· πŸ’€) - Tools for building equivariant polynomials on reductive Lie groups. MIT rep-learn - EquivariantOperators.jl (πŸ₯‰6 Β· ⭐ 19 Β· πŸ’€) - This package is deprecated. Functionalities are migrating to Porcupine.jl. MIT Julia - cnine (πŸ₯‰5 Β· ⭐ 4) - Cnine tensor library. Unlicensed C++ - torch_spex (πŸ₯‰3 Β· ⭐ 3 Β· πŸ’€) - Spherical expansions in PyTorch. Unlicensed - Wigner Kernels (πŸ₯‰1 Β· ⭐ 2 Β· πŸ’€) - Collection of programs to benchmark Wigner kernels. Unlicensed benchmarking


Molecular Dynamics

Back to top

Projects that simplify the integration of molecular dynamics and atomistic machine learning.

JAX-MD (πŸ₯‡25 Β· ⭐ 1.2K) - Differentiable, Hardware Accelerated, Molecular Dynamics. Apache-2 - [GitHub](https://github.com/jax-md/jax-md) (πŸ‘¨β€πŸ’» 35 Β· πŸ”€ 200 Β· πŸ“¦ 62 Β· πŸ“‹ 160 - 49% open Β· ⏱️ 31.10.2024): ``` git clone https://github.com/jax-md/jax-md ``` - [PyPi](https://pypi.org/project/jax-md) (πŸ“₯ 5.4K / month Β· πŸ“¦ 3 Β· ⏱️ 09.08.2023): ``` pip install jax-md ```
mlcolvar (πŸ₯ˆ21 Β· ⭐ 92) - A unified framework for machine learning collective variables for enhanced sampling simulations. MIT sampling - [GitHub](https://github.com/luigibonati/mlcolvar) (πŸ‘¨β€πŸ’» 8 Β· πŸ”€ 26 Β· πŸ“¦ 3 Β· πŸ“‹ 74 - 17% open Β· ⏱️ 19.11.2024): ``` git clone https://github.com/luigibonati/mlcolvar ``` - [PyPi](https://pypi.org/project/mlcolvar) (πŸ“₯ 320 / month Β· ⏱️ 12.06.2024): ``` pip install mlcolvar ```
FitSNAP (πŸ₯ˆ19 Β· ⭐ 150) - Software for generating machine-learning interatomic potentials for LAMMPS. GPL-2.0 - [GitHub](https://github.com/FitSNAP/FitSNAP) (πŸ‘¨β€πŸ’» 24 Β· πŸ”€ 53 Β· πŸ“₯ 13 Β· πŸ“‹ 73 - 21% open Β· ⏱️ 19.09.2024): ``` git clone https://github.com/FitSNAP/FitSNAP ``` - [Conda](https://anaconda.org/conda-forge/fitsnap3) (πŸ“₯ 9.3K Β· ⏱️ 16.06.2023): ``` conda install -c conda-forge fitsnap3 ```
openmm-torch (πŸ₯ˆ17 Β· ⭐ 180) - OpenMM plugin to define forces with neural networks. Custom ML-IAP C++ - [GitHub](https://github.com/openmm/openmm-torch) (πŸ‘¨β€πŸ’» 8 Β· πŸ”€ 24 Β· πŸ“‹ 96 - 29% open Β· ⏱️ 11.11.2024): ``` git clone https://github.com/openmm/openmm-torch ``` - [Conda](https://anaconda.org/conda-forge/openmm-torch) (πŸ“₯ 540K Β· ⏱️ 12.11.2024): ``` conda install -c conda-forge openmm-torch ```
OpenMM-ML (πŸ₯‰13 Β· ⭐ 82) - High level API for using machine learning models in OpenMM simulations. MIT ML-IAP - [GitHub](https://github.com/openmm/openmm-ml) (πŸ‘¨β€πŸ’» 5 Β· πŸ”€ 19 Β· πŸ“‹ 55 - 36% open Β· ⏱️ 06.08.2024): ``` git clone https://github.com/openmm/openmm-ml ``` - [Conda](https://anaconda.org/conda-forge/openmm-ml) (πŸ“₯ 6K Β· ⏱️ 07.06.2024): ``` conda install -c conda-forge openmm-ml ```
pair_nequip (πŸ₯‰10 Β· ⭐ 41) - LAMMPS pair style for NequIP. MIT ML-IAP rep-learn - [GitHub](https://github.com/mir-group/pair_nequip) (πŸ‘¨β€πŸ’» 3 Β· πŸ”€ 12 Β· πŸ“‹ 31 - 35% open Β· ⏱️ 05.06.2024): ``` git clone https://github.com/mir-group/pair_nequip ```
PACE (πŸ₯‰9 Β· ⭐ 26) - The LAMMPS ML-IAP `pair_style pace`, aka Atomic Cluster Expansion (ACE), aka ML-PACE,.. Custom - [GitHub](https://github.com/ICAMS/lammps-user-pace) (πŸ‘¨β€πŸ’» 7 Β· πŸ”€ 11 Β· πŸ“‹ 8 - 25% open Β· ⏱️ 09.11.2024): ``` git clone https://github.com/ICAMS/lammps-user-pace ```
pair_allegro (πŸ₯‰8 Β· ⭐ 35) - LAMMPS pair style for Allegro deep learning interatomic potentials with parallelization support. MIT ML-IAP rep-learn - [GitHub](https://github.com/mir-group/pair_allegro) (πŸ‘¨β€πŸ’» 2 Β· πŸ”€ 8 Β· πŸ“‹ 33 - 45% open Β· ⏱️ 05.06.2024): ``` git clone https://github.com/mir-group/pair_allegro ```
SOMD (πŸ₯‰6 Β· ⭐ 12) - Molecular dynamics package designed for the SIESTA DFT code. AGPL-3.0 ML-IAP active-learning - [GitHub](https://github.com/initqp/somd) (πŸ”€ 2 Β· ⏱️ 04.11.2024): ``` git clone https://github.com/initqp/somd ```
Show 1 hidden projects... - interface-lammps-mlip-3 (πŸ₯‰3 Β· ⭐ 5 Β· πŸ’€) - An interface between LAMMPS and MLIP (version 3). GPL-2.0


Reinforcement Learning

Back to top

Projects that focus on reinforcement learning for atomistic ML.

Show 2 hidden projects... - ReLeaSE (πŸ₯‡11 Β· ⭐ 350 Β· πŸ’€) - Deep Reinforcement Learning for de-novo Drug Design. MIT drug-discovery - CatGym (πŸ₯‰6 Β· ⭐ 11 Β· πŸ’€) - Surface segregation using Deep Reinforcement Learning. GPL


Representation Engineering

Back to top

Projects that offer implementations of representations aka descriptors, fingerprints of atomistic systems, and models built with them, aka feature engineering.

cdk (πŸ₯‡26 Β· ⭐ 500) - The Chemistry Development Kit. LGPL-2.1 cheminformatics Java - [GitHub](https://github.com/cdk/cdk) (πŸ‘¨β€πŸ’» 170 Β· πŸ”€ 160 Β· πŸ“₯ 23K Β· πŸ“‹ 290 - 10% open Β· ⏱️ 13.11.2024): ``` git clone https://github.com/cdk/cdk ``` - [Maven](https://search.maven.org/artifact/org.openscience.cdk/cdk-bundle) (πŸ“¦ 16 Β· ⏱️ 21.08.2023): ``` org.openscience.cdk cdk-bundle [VERSION] ```
DScribe (πŸ₯‡24 Β· ⭐ 400) - DScribe is a python package for creating machine learning descriptors for atomistic systems. Apache-2 - [GitHub](https://github.com/SINGROUP/dscribe) (πŸ‘¨β€πŸ’» 18 Β· πŸ”€ 88 Β· πŸ“¦ 210 Β· πŸ“‹ 100 - 11% open Β· ⏱️ 28.05.2024): ``` git clone https://github.com/SINGROUP/dscribe ``` - [PyPi](https://pypi.org/project/dscribe) (πŸ“₯ 20K / month Β· πŸ“¦ 35 Β· ⏱️ 28.05.2024): ``` pip install dscribe ``` - [Conda](https://anaconda.org/conda-forge/dscribe) (πŸ“₯ 150K Β· ⏱️ 28.05.2024): ``` conda install -c conda-forge dscribe ```
MODNet (πŸ₯ˆ16 Β· ⭐ 80) - MODNet: a framework for machine learning materials properties. MIT pretrained small-data transfer-learning - [GitHub](https://github.com/ppdebreuck/modnet) (πŸ‘¨β€πŸ’» 11 Β· πŸ”€ 33 Β· πŸ“¦ 10 Β· πŸ“‹ 56 - 46% open Β· ⏱️ 13.11.2024): ``` git clone https://github.com/ppdebreuck/modnet ```
GlassPy (πŸ₯ˆ15 Β· ⭐ 28) - Python module for scientists working with glass materials. GPL-3.0 - [GitHub](https://github.com/drcassar/glasspy) (πŸ‘¨β€πŸ’» 2 Β· πŸ”€ 7 Β· πŸ“¦ 7 Β· πŸ“‹ 15 - 46% open Β· ⏱️ 13.10.2024): ``` git clone https://github.com/drcassar/glasspy ``` - [PyPi](https://pypi.org/project/glasspy) (πŸ“₯ 840 / month Β· ⏱️ 05.09.2024): ``` pip install glasspy ```
SISSO (πŸ₯ˆ14 Β· ⭐ 250) - A data-driven method combining symbolic regression and compressed sensing for accurate & interpretable models. Apache-2 Fortran - [GitHub](https://github.com/rouyang2017/SISSO) (πŸ‘¨β€πŸ’» 3 Β· πŸ”€ 83 Β· πŸ“‹ 77 - 23% open Β· ⏱️ 20.09.2024): ``` git clone https://github.com/rouyang2017/SISSO ```
Librascal (πŸ₯ˆ13 Β· ⭐ 80 Β· πŸ’€) - A scalable and versatile library to generate representations for atomic-scale learning. LGPL-2.1 - [GitHub](https://github.com/lab-cosmo/librascal) (πŸ‘¨β€πŸ’» 30 Β· πŸ”€ 20 Β· πŸ“‹ 250 - 46% open Β· ⏱️ 30.11.2023): ``` git clone https://github.com/lab-cosmo/librascal ```
Rascaline (πŸ₯ˆ12 Β· ⭐ 46) - Computing representations for atomistic machine learning. BSD-3 Rust C++ - [GitHub](https://github.com/metatensor/featomic) (πŸ‘¨β€πŸ’» 14 Β· πŸ”€ 14 Β· πŸ“‹ 70 - 45% open Β· ⏱️ 19.11.2024): ``` git clone https://github.com/Luthaf/rascaline ```
fplib (πŸ₯‰11 Β· ⭐ 7) - libfp is a library for calculating crystalline fingerprints and measuring similarities of materials. MIT C-lang single-paper - [GitHub](https://github.com/Rutgers-ZRG/libfp) (πŸ”€ 1 Β· πŸ“¦ 1 Β· ⏱️ 15.10.2024): ``` git clone https://github.com/zhuligs/fplib ```
NICE (πŸ₯‰7 Β· ⭐ 12 Β· πŸ’€) - NICE (N-body Iteratively Contracted Equivariants) is a set of tools designed for the calculation of invariant and.. MIT - [GitHub](https://github.com/lab-cosmo/nice) (πŸ‘¨β€πŸ’» 4 Β· πŸ”€ 3 Β· πŸ“‹ 3 - 66% open Β· ⏱️ 15.04.2024): ``` git clone https://github.com/lab-cosmo/nice ```
milad (πŸ₯‰6 Β· ⭐ 30) - Moment Invariants Local Atomic Descriptor. GPL-3.0 generative - [GitHub](https://github.com/muhrin/milad) (πŸ‘¨β€πŸ’» 1 Β· πŸ”€ 2 Β· πŸ“¦ 3 Β· ⏱️ 20.08.2024): ``` git clone https://github.com/muhrin/milad ```
SA-GPR (πŸ₯‰6 Β· ⭐ 19) - Public repository for symmetry-adapted Gaussian Process Regression (SA-GPR). LGPL-3.0 C-lang - [GitHub](https://github.com/dilkins/TENSOAP) (πŸ‘¨β€πŸ’» 5 Β· πŸ”€ 14 Β· πŸ“‹ 7 - 28% open Β· ⏱️ 23.07.2024): ``` git clone https://github.com/dilkins/TENSOAP ```
Show 14 hidden projects... - CatLearn (πŸ₯‡17 Β· ⭐ 100 Β· πŸ’€) - GPL-3.0 surface-science - cmlkit (πŸ₯ˆ12 Β· ⭐ 34 Β· πŸ’€) - tools for machine learning in condensed matter physics and quantum chemistry. MIT benchmarking - CBFV (πŸ₯ˆ12 Β· ⭐ 25 Β· πŸ’€) - Tool to quickly create a composition-based feature vector. Unlicensed - BenchML (πŸ₯ˆ12 Β· ⭐ 15 Β· πŸ’€) - ML benchmarking and pipeling framework. Apache-2 benchmarking - SkipAtom (πŸ₯‰9 Β· ⭐ 24 Β· πŸ’€) - Distributed representations of atoms, inspired by the Skip-gram model. MIT - AMP (πŸ₯‰7 Β· πŸ’€) - Amp is an open-source package designed to easily bring machine-learning to atomistic calculations. Unlicensed - SOAPxx (πŸ₯‰6 Β· ⭐ 7 Β· πŸ’€) - A SOAP implementation. GPL-2.0 C++ - soap_turbo (πŸ₯‰6 Β· ⭐ 5 Β· πŸ’€) - soap_turbo comprises a series of libraries to be used in combination with QUIP/GAP and TurboGAP. Custom Fortran - pyLODE (πŸ₯‰6 Β· ⭐ 3 Β· πŸ’€) - Pythonic implementation of LOng Distance Equivariants. Apache-2 electrostatics - MXenes4HER (πŸ₯‰5 Β· ⭐ 6 Β· πŸ’€) - Predicting hydrogen evolution (HER) activity over 4500 MXene materials https://doi.org/10.1039/D3TA00344B. GPL-3.0 materials-discovery catalysis scikit-learn single-paper - SISSO++ (πŸ₯‰5 Β· ⭐ 3 Β· πŸ’€) - C++ Implementation of SISSO with python bindings. Apache-2 C++ - automl-materials (πŸ₯‰4 Β· ⭐ 5 Β· πŸ’€) - AutoML for Regression Tasks on Small Tabular Data in Materials Design. MIT autoML benchmarking single-paper - magnetism-prediction (πŸ₯‰4 Β· ⭐ 1 Β· πŸ’€) - DFT-aided Machine Learning Search for Magnetism in Fe-based Bimetallic Chalcogenides. Apache-2 magnetism single-paper - ML-for-CurieTemp-Predictions (πŸ₯‰3 Β· ⭐ 1 Β· πŸ’€) - Machine Learning Predictions of High-Curie-Temperature Materials. MIT single-paper magnetism


Representation Learning

Back to top

General models that learn a representations aka embeddings of atomistic systems, such as message-passing neural networks (MPNN).

Deep Graph Library (DGL) (πŸ₯‡38 Β· ⭐ 14K) - Python package built to ease deep learning on graph, on top of existing DL frameworks. Apache-2 - [GitHub](https://github.com/dmlc/dgl) (πŸ‘¨β€πŸ’» 300 Β· πŸ”€ 3K Β· πŸ“¦ 320 Β· πŸ“‹ 2.9K - 18% open Β· ⏱️ 18.10.2024): ``` git clone https://github.com/dmlc/dgl ``` - [PyPi](https://pypi.org/project/dgl) (πŸ“₯ 340K / month Β· πŸ“¦ 150 Β· ⏱️ 13.05.2024): ``` pip install dgl ``` - [Conda](https://anaconda.org/dglteam/dgl) (πŸ“₯ 390K Β· ⏱️ 03.09.2024): ``` conda install -c dglteam dgl ```
PyG Models (πŸ₯‡35 Β· ⭐ 21K) - Representation learning models implemented in PyTorch Geometric. MIT general-ml - [GitHub](https://github.com/pyg-team/pytorch_geometric) (πŸ‘¨β€πŸ’» 530 Β· πŸ”€ 3.7K Β· πŸ“¦ 7K Β· πŸ“‹ 3.7K - 28% open Β· ⏱️ 20.11.2024): ``` git clone https://github.com/pyg-team/pytorch_geometric ```
e3nn (πŸ₯‡28 Β· ⭐ 970) - A modular framework for neural networks with Euclidean symmetry. MIT - [GitHub](https://github.com/e3nn/e3nn) (πŸ‘¨β€πŸ’» 33 Β· πŸ”€ 140 Β· πŸ“¦ 340 Β· πŸ“‹ 160 - 14% open Β· ⏱️ 06.11.2024): ``` git clone https://github.com/e3nn/e3nn ``` - [PyPi](https://pypi.org/project/e3nn) (πŸ“₯ 80K / month Β· πŸ“¦ 34 Β· ⏱️ 06.11.2024): ``` pip install e3nn ``` - [Conda](https://anaconda.org/conda-forge/e3nn) (πŸ“₯ 25K Β· ⏱️ 06.11.2024): ``` conda install -c conda-forge e3nn ```
SchNetPack (πŸ₯‡28 Β· ⭐ 790 Β· πŸ“ˆ) - SchNetPack - Deep Neural Networks for Atomistic Systems. MIT - [GitHub](https://github.com/atomistic-machine-learning/schnetpack) (πŸ‘¨β€πŸ’» 36 Β· πŸ”€ 210 Β· πŸ“¦ 94 Β· πŸ“‹ 260 - 2% open Β· ⏱️ 14.11.2024): ``` git clone https://github.com/atomistic-machine-learning/schnetpack ``` - [PyPi](https://pypi.org/project/schnetpack) (πŸ“₯ 1.1K / month Β· πŸ“¦ 4 Β· ⏱️ 05.09.2024): ``` pip install schnetpack ```
MatGL (Materials Graph Library) (πŸ₯‡25 Β· ⭐ 280) - Graph deep learning library for materials. BSD-3 multifidelity - [GitHub](https://github.com/materialsvirtuallab/matgl) (πŸ‘¨β€πŸ’» 17 Β· πŸ”€ 65 Β· πŸ“¦ 55 Β· πŸ“‹ 100 - 7% open Β· ⏱️ 21.11.2024): ``` git clone https://github.com/materialsvirtuallab/matgl ``` - [PyPi](https://pypi.org/project/m3gnet) (πŸ“₯ 1.5K / month Β· πŸ“¦ 5 Β· ⏱️ 17.11.2022): ``` pip install m3gnet ```
DIG: Dive into Graphs (πŸ₯ˆ21 Β· ⭐ 1.9K Β· πŸ’€) - A library for graph deep learning research. GPL-3.0 - [GitHub](https://github.com/divelab/DIG) (πŸ‘¨β€πŸ’» 50 Β· πŸ”€ 280 Β· πŸ“‹ 210 - 16% open Β· ⏱️ 04.02.2024): ``` git clone https://github.com/divelab/DIG ``` - [PyPi](https://pypi.org/project/dive-into-graphs) (πŸ“₯ 1.2K / month Β· ⏱️ 27.06.2022): ``` pip install dive-into-graphs ```
ALIGNN (πŸ₯ˆ21 Β· ⭐ 240) - Atomistic Line Graph Neural Network https://scholar.google.com/citations?user=9Q-tNnwAAAAJ&hl=en.. Custom - [GitHub](https://github.com/usnistgov/alignn) (πŸ‘¨β€πŸ’» 7 Β· πŸ”€ 82 Β· πŸ“¦ 16 Β· πŸ“‹ 65 - 61% open Β· ⏱️ 09.09.2024): ``` git clone https://github.com/usnistgov/alignn ``` - [PyPi](https://pypi.org/project/alignn) (πŸ“₯ 12K / month Β· πŸ“¦ 6 Β· ⏱️ 09.09.2024): ``` pip install alignn ```
e3nn-jax (πŸ₯ˆ21 Β· ⭐ 180) - jax library for E3 Equivariant Neural Networks. Apache-2 - [GitHub](https://github.com/e3nn/e3nn-jax) (πŸ‘¨β€πŸ’» 7 Β· πŸ”€ 18 Β· πŸ“¦ 42 Β· πŸ“‹ 23 - 8% open Β· ⏱️ 28.09.2024): ``` git clone https://github.com/e3nn/e3nn-jax ``` - [PyPi](https://pypi.org/project/e3nn-jax) (πŸ“₯ 4.5K / month Β· πŸ“¦ 13 Β· ⏱️ 14.08.2024): ``` pip install e3nn-jax ```
NVIDIA Deep Learning Examples for Tensor Cores (πŸ₯ˆ20 Β· ⭐ 14K Β· πŸ’€) - State-of-the-Art Deep Learning scripts organized by models - easy to train and deploy with reproducible accuracy and.. Custom educational drug-discovery - [GitHub](https://github.com/NVIDIA/DeepLearningExamples) (πŸ‘¨β€πŸ’» 120 Β· πŸ”€ 3.2K Β· πŸ“‹ 910 - 37% open Β· ⏱️ 04.04.2024): ``` git clone https://github.com/NVIDIA/DeepLearningExamples ```
matsciml (πŸ₯ˆ19 Β· ⭐ 150) - Open MatSci ML Toolkit is a framework for prototyping and scaling out deep learning models for materials discovery.. MIT workflows benchmarking - [GitHub](https://github.com/IntelLabs/matsciml) (πŸ‘¨β€πŸ’» 12 Β· πŸ”€ 23 Β· πŸ“‹ 65 - 33% open Β· ⏱️ 18.11.2024): ``` git clone https://github.com/IntelLabs/matsciml ```
kgcnn (πŸ₯ˆ19 Β· ⭐ 110) - Graph convolutions in Keras with TensorFlow, PyTorch or Jax. MIT - [GitHub](https://github.com/aimat-lab/gcnn_keras) (πŸ‘¨β€πŸ’» 7 Β· πŸ”€ 30 Β· πŸ“¦ 19 Β· πŸ“‹ 86 - 13% open Β· ⏱️ 06.05.2024): ``` git clone https://github.com/aimat-lab/gcnn_keras ``` - [PyPi](https://pypi.org/project/kgcnn) (πŸ“₯ 1.3K / month Β· πŸ“¦ 3 Β· ⏱️ 27.02.2024): ``` pip install kgcnn ```
Uni-Mol (πŸ₯ˆ18 Β· ⭐ 720) - Official Repository for the Uni-Mol Series Methods. MIT pretrained - [GitHub](https://github.com/deepmodeling/Uni-Mol) (πŸ‘¨β€πŸ’» 17 Β· πŸ”€ 130 Β· πŸ“₯ 16K Β· πŸ“‹ 170 - 43% open Β· ⏱️ 21.11.2024): ``` git clone https://github.com/deepmodeling/Uni-Mol ```
escnn (πŸ₯ˆ18 Β· ⭐ 360) - Equivariant Steerable CNNs Library for Pytorch https://quva-lab.github.io/escnn/. Custom - [GitHub](https://github.com/QUVA-Lab/escnn) (πŸ‘¨β€πŸ’» 10 Β· πŸ”€ 45 Β· πŸ“‹ 75 - 50% open Β· ⏱️ 31.10.2024): ``` git clone https://github.com/QUVA-Lab/escnn ``` - [PyPi](https://pypi.org/project/escnn) (πŸ“₯ 1.3K / month Β· πŸ“¦ 6 Β· ⏱️ 01.04.2022): ``` pip install escnn ```
Graphormer (πŸ₯ˆ15 Β· ⭐ 2.1K) - Graphormer is a general-purpose deep learning backbone for molecular modeling. MIT transformer pretrained - [GitHub](https://github.com/microsoft/Graphormer) (πŸ‘¨β€πŸ’» 14 Β· πŸ”€ 330 Β· πŸ“‹ 160 - 58% open Β· ⏱️ 28.05.2024): ``` git clone https://github.com/microsoft/Graphormer ```
HydraGNN (πŸ₯ˆ14 Β· ⭐ 68) - Distributed PyTorch implementation of multi-headed graph convolutional neural networks. BSD-3 - [GitHub](https://github.com/ORNL/HydraGNN) (πŸ‘¨β€πŸ’» 14 Β· πŸ”€ 28 Β· πŸ“¦ 2 Β· πŸ“‹ 49 - 34% open Β· ⏱️ 09.11.2024): ``` git clone https://github.com/ORNL/HydraGNN ```
Compositionally-Restricted Attention-Based Network (CrabNet) (πŸ₯ˆ14 Β· ⭐ 12) - Predict materials properties using only the composition information!. MIT - [GitHub](https://github.com/sparks-baird/CrabNet) (πŸ‘¨β€πŸ’» 6 Β· πŸ”€ 5 Β· πŸ“¦ 14 Β· πŸ“‹ 19 - 84% open Β· ⏱️ 09.09.2024): ``` git clone https://github.com/sparks-baird/CrabNet ``` - [PyPi](https://pypi.org/project/crabnet) (πŸ“₯ 2.1K / month Β· πŸ“¦ 2 Β· ⏱️ 10.01.2023): ``` pip install crabnet ```
hippynn (πŸ₯ˆ12 Β· ⭐ 71) - python library for atomistic machine learning. Custom workflows - [GitHub](https://github.com/lanl/hippynn) (πŸ‘¨β€πŸ’» 14 Β· πŸ”€ 23 Β· πŸ“¦ 2 Β· πŸ“‹ 22 - 45% open Β· ⏱️ 31.10.2024): ``` git clone https://github.com/lanl/hippynn ```
Atom2Vec (πŸ₯ˆ10 Β· ⭐ 35 Β· πŸ’€) - Atom2Vec: a simple way to describe atoms for machine learning. MIT - [GitHub](https://github.com/idocx/Atom2Vec) (πŸ‘¨β€πŸ’» 1 Β· πŸ”€ 9 Β· πŸ“¦ 3 Β· πŸ“‹ 4 - 75% open Β· ⏱️ 23.02.2024): ``` git clone https://github.com/idocx/Atom2Vec ``` - [PyPi](https://pypi.org/project/atom2vec) (πŸ“₯ 310 / month Β· ⏱️ 23.02.2024): ``` pip install atom2vec ```
ai4material_design (πŸ₯‰9 Β· ⭐ 6 Β· πŸ’€) - Code for Kazeev, N., Al-Maeeni, A.R., Romanov, I. et al. Sparse representation for machine learning the properties of.. Apache-2 pretrained material-defect - [GitHub](https://github.com/HSE-LAMBDA/ai4material_design) (πŸ‘¨β€πŸ’» 11 Β· πŸ”€ 3 Β· ⏱️ 21.11.2023): ``` git clone https://github.com/HSE-LAMBDA/ai4material_design ```
EquiformerV2 (πŸ₯‰8 Β· ⭐ 220) - [ICLR 2024] EquiformerV2: Improved Equivariant Transformer for Scaling to Higher-Degree Representations. MIT - [GitHub](https://github.com/atomicarchitects/equiformer_v2) (πŸ‘¨β€πŸ’» 2 Β· πŸ”€ 26 Β· πŸ“‹ 19 - 68% open Β· ⏱️ 16.07.2024): ``` git clone https://github.com/atomicarchitects/equiformer_v2 ```
Equiformer (πŸ₯‰8 Β· ⭐ 210) - [ICLR 2023 Spotlight] Equiformer: Equivariant Graph Attention Transformer for 3D Atomistic Graphs. MIT transformer - [GitHub](https://github.com/atomicarchitects/equiformer) (πŸ‘¨β€πŸ’» 2 Β· πŸ”€ 37 Β· πŸ“‹ 17 - 47% open Β· ⏱️ 18.07.2024): ``` git clone https://github.com/atomicarchitects/equiformer ```
graphite (πŸ₯‰8 Β· ⭐ 64) - A repository for implementing graph network models based on atomic structures. MIT - [GitHub](https://github.com/LLNL/graphite) (πŸ‘¨β€πŸ’» 2 Β· πŸ”€ 9 Β· πŸ“¦ 13 Β· πŸ“‹ 4 - 75% open Β· ⏱️ 08.08.2024): ``` git clone https://github.com/llnl/graphite ```
DeeperGATGNN (πŸ₯‰8 Β· ⭐ 48 Β· πŸ’€) - Scalable graph neural networks for materials property prediction. MIT - [GitHub](https://github.com/usccolumbia/deeperGATGNN) (πŸ‘¨β€πŸ’» 3 Β· πŸ”€ 7 Β· πŸ“‹ 12 - 33% open Β· ⏱️ 19.01.2024): ``` git clone https://github.com/usccolumbia/deeperGATGNN ```
T-e3nn (πŸ₯‰8 Β· ⭐ 11) - Time-reversal Euclidean neural networks based on e3nn. MIT magnetism - [GitHub](https://github.com/Hongyu-yu/T-e3nn) (πŸ‘¨β€πŸ’» 26 Β· ⏱️ 29.09.2024): ``` git clone https://github.com/Hongyu-yu/T-e3nn ```
Show 34 hidden projects... - dgl-lifesci (πŸ₯‡23 Β· ⭐ 730 Β· πŸ’€) - Python package for graph neural networks in chemistry and biology. Apache-2 - benchmarking-gnns (πŸ₯ˆ14 Β· ⭐ 2.5K Β· πŸ’€) - Repository for benchmarking graph neural networks. MIT single-paper benchmarking - Crystal Graph Convolutional Neural Networks (CGCNN) (πŸ₯ˆ13 Β· ⭐ 660 Β· πŸ’€) - Crystal graph convolutional neural networks for predicting material properties. MIT - Neural fingerprint (nfp) (πŸ₯ˆ12 Β· ⭐ 57 Β· πŸ’€) - Keras layers for end-to-end learning with rdkit and pymatgen. Custom - FAENet (πŸ₯ˆ12 Β· ⭐ 33 Β· πŸ’€) - Frame Averaging Equivariant GNN for materials modeling. MIT - pretrained-gnns (πŸ₯ˆ10 Β· ⭐ 970 Β· πŸ’€) - Strategies for Pre-training Graph Neural Networks. MIT pretrained - GDC (πŸ₯ˆ10 Β· ⭐ 270 Β· πŸ’€) - Graph Diffusion Convolution, as proposed in Diffusion Improves Graph Learning (NeurIPS 2019). MIT generative - SE(3)-Transformers (πŸ₯‰9 Β· ⭐ 500 Β· πŸ’€) - code for the SE3 Transformers paper: https://arxiv.org/abs/2006.10503. MIT single-paper transformer - GATGNN: Global Attention Graph Neural Network (πŸ₯‰9 Β· ⭐ 71 Β· πŸ’€) - Pytorch Repository for our work: Graph convolutional neural networks with global attention for improved materials.. MIT - molecularGNN_smiles (πŸ₯‰8 Β· ⭐ 300 Β· πŸ’€) - The code of a graph neural network (GNN) for molecules, which is based on learning representations of r-radius.. Apache-2 - CGAT (πŸ₯‰8 Β· ⭐ 26 Β· πŸ’€) - Crystal graph attention neural networks for materials prediction. MIT - UVVisML (πŸ₯‰8 Β· ⭐ 23 Β· πŸ’€) - Predict optical properties of molecules with machine learning. MIT optical-properties single-paper probabilistic - tensorfieldnetworks (πŸ₯‰7 Β· ⭐ 150 Β· πŸ’€) - Rotation- and translation-equivariant neural networks for 3D point clouds. MIT - DTNN (πŸ₯‰7 Β· ⭐ 77 Β· πŸ’€) - Deep Tensor Neural Network. MIT - Cormorant (πŸ₯‰7 Β· ⭐ 60 Β· πŸ’€) - Codebase for Cormorant Neural Networks. Custom - AdsorbML (πŸ₯‰7 Β· ⭐ 37 Β· πŸ’€) - MIT surface-science single-paper - escnn_jax (πŸ₯‰7 Β· ⭐ 29 Β· πŸ’€) - Equivariant Steerable CNNs Library for Pytorch https://quva-lab.github.io/escnn/. Custom - ML4pXRDs (πŸ₯‰7 Β· πŸ’€) - Contains code to train neural networks based on simulated powder XRDs from synthetic crystals. MIT XRD single-paper - MACE-Layer (πŸ₯‰6 Β· ⭐ 33 Β· πŸ’€) - Higher order equivariant graph neural networks for 3D point clouds. MIT - charge_transfer_nnp (πŸ₯‰6 Β· ⭐ 33 Β· πŸ’€) - Graph neural network potential with charge transfer. MIT electrostatics - GLAMOUR (πŸ₯‰6 Β· ⭐ 21 Β· πŸ’€) - Graph Learning over Macromolecule Representations. MIT single-paper - Autobahn (πŸ₯‰5 Β· ⭐ 29 Β· πŸ’€) - Repository for Autobahn: Automorphism Based Graph Neural Networks. MIT - FieldSchNet (πŸ₯‰5 Β· ⭐ 19 Β· πŸ’€) - Deep neural network for molecules in external fields. MIT - SCFNN (πŸ₯‰5 Β· ⭐ 14 Β· πŸ’€) - Self-consistent determination of long-range electrostatics in neural network potentials. MIT C++ electrostatics single-paper - CraTENet (πŸ₯‰5 Β· ⭐ 14 Β· πŸ’€) - An attention-based deep neural network for thermoelectric transport properties. MIT transport-phenomena - EGraFFBench (πŸ₯‰5 Β· ⭐ 8 Β· πŸ’€) - Unlicensed single-paper benchmarking ML-IAP - Per-Site CGCNN (πŸ₯‰5 Β· ⭐ 1 Β· πŸ’€) - Crystal graph convolutional neural networks for predicting material properties. MIT pretrained single-paper - Per-site PAiNN (πŸ₯‰5 Β· ⭐ 1 Β· πŸ’€) - Fork of PaiNN for PerovskiteOrderingGCNNs. MIT probabilistic pretrained single-paper - Graph Transport Network (πŸ₯‰4 Β· ⭐ 16 Β· πŸ’€) - Graph transport network (GTN), as proposed in Scalable Optimal Transport in High Dimensions for Graph Distances,.. Custom transport-phenomena - gkx: Green-Kubo Method in JAX (πŸ₯‰4 Β· ⭐ 5 Β· πŸ’€) - Green-Kubo + JAX + MLPs = Anharmonic Thermal Conductivities Done Fast. MIT transport-phenomena - atom_by_atom (πŸ₯‰3 Β· ⭐ 9 Β· πŸ’€) - Atom-by-atom design of metal oxide catalysts for the oxygen evolution reaction with Machine Learning. Unlicensed surface-science single-paper - Element encoder (πŸ₯‰3 Β· ⭐ 6 Β· πŸ’€) - Autoencoder neural network to compress properties of atomic species into a vector representation. GPL-3.0 single-paper - Point Edge Transformer (πŸ₯‰2) - Smooth, exact rotational symmetrization for deep learning on point clouds. CC-BY-4.0 - SphericalNet (πŸ₯‰1 Β· ⭐ 3 Β· πŸ’€) - Implementation of Clebsch-Gordan Networks (CGnet: https://arxiv.org/pdf/1806.09231.pdf) by GElib & cnine libraries in.. Unlicensed


Universal Potentials

Back to top

Machine-learned interatomic potentials (ML-IAP) that have been trained on large, chemically and structural diverse datasets. For materials, this means e.g. datasets that include a majority of the periodic table.

πŸ”— TeaNet - Universal neural network interatomic potential inspired by iterative electronic relaxations.. ML-IAP

πŸ”— PreFerred Potential (PFP) - Universal neural network potential for material discovery https://doi.org/10.1038/s41467-022-30687-9. ML-IAP proprietary

πŸ”— MatterSim - A Deep Learning Atomistic Model Across Elements, Temperatures and Pressures https://doi.org/10.48550/arXiv.2405.04967. ML-IAP active-learning proprietary

DPA-2 (πŸ₯‡26 Β· ⭐ 1.5K) - Towards a universal large atomic model for molecular and material simulation https://doi.org/10.48550/arXiv.2312.15492. LGPL-3.0 ML-IAP pretrained workflows datasets - [GitHub](https://github.com/deepmodeling/deepmd-kit) (πŸ‘¨β€πŸ’» 70 Β· πŸ”€ 510 Β· πŸ“₯ 43K Β· πŸ“¦ 20 Β· πŸ“‹ 830 - 9% open Β· ⏱️ 19.11.2024): ``` git clone https://github.com/deepmodeling/deepmd-kit ```
CHGNet (πŸ₯ˆ23 Β· ⭐ 250) - Pretrained universal neural network potential for charge-informed atomistic modeling https://chgnet.lbl.gov. Custom ML-IAP MD pretrained electrostatics magnetism structure-relaxation - [GitHub](https://github.com/CederGroupHub/chgnet) (πŸ‘¨β€πŸ’» 10 Β· πŸ”€ 66 Β· πŸ“¦ 40 Β· πŸ“‹ 62 - 4% open Β· ⏱️ 16.11.2024): ``` git clone https://github.com/CederGroupHub/chgnet ``` - [PyPi](https://pypi.org/project/chgnet) (πŸ“₯ 45K / month Β· πŸ“¦ 21 Β· ⏱️ 16.09.2024): ``` pip install chgnet ```
MACE-MP (πŸ₯ˆ19 Β· ⭐ 540) - Pretrained foundation models for materials chemistry. MIT ML-IAP pretrained rep-learn MD - [GitHub](https://github.com/ACEsuit/mace-mp) (πŸ‘¨β€πŸ’» 2 Β· πŸ”€ 200 Β· πŸ“₯ 38K Β· πŸ“‹ 10 - 10% open Β· ⏱️ 15.11.2024): ``` git clone https://github.com/ACEsuit/mace-mp ``` - [PyPi](https://pypi.org/project/mace-torch) (πŸ“₯ 14K / month Β· πŸ“¦ 20 Β· ⏱️ 12.11.2024): ``` pip install mace-torch ```
M3GNet (πŸ₯ˆ18 Β· ⭐ 240) - Materials graph network with 3-body interactions featuring a DFT surrogate crystal relaxer and a state-of-the-art.. BSD-3 ML-IAP pretrained - [GitHub](https://github.com/materialsvirtuallab/m3gnet) (πŸ‘¨β€πŸ’» 16 Β· πŸ”€ 61 Β· πŸ“¦ 28 Β· πŸ“‹ 35 - 42% open Β· ⏱️ 04.10.2024): ``` git clone https://github.com/materialsvirtuallab/m3gnet ``` - [PyPi](https://pypi.org/project/m3gnet) (πŸ“₯ 1.5K / month Β· πŸ“¦ 5 Β· ⏱️ 17.11.2022): ``` pip install m3gnet ```
Orb Models (πŸ₯‰17 Β· ⭐ 200 Β· 🐣) - ORB forcefield models from Orbital Materials. Custom ML-IAP pretrained - [GitHub](https://github.com/orbital-materials/orb-models) (πŸ‘¨β€πŸ’» 6 Β· πŸ”€ 23 Β· πŸ“¦ 3 Β· ⏱️ 17.10.2024): ``` git clone https://github.com/orbital-materials/orb-models ``` - [PyPi](https://pypi.org/project/orb-models) (πŸ“₯ 1.2K / month Β· ⏱️ 15.10.2024): ``` pip install orb-models ```
SevenNet (πŸ₯‰16 Β· ⭐ 130) - SevenNet (Scalable EquiVariance Enabled Neural Network) is a graph neural network interatomic potential package that.. GPL-3.0 ML-IAP MD pretrained - [GitHub](https://github.com/MDIL-SNU/SevenNet) (πŸ‘¨β€πŸ’» 12 Β· πŸ”€ 17 Β· πŸ“¦ 6 Β· πŸ“‹ 26 - 30% open Β· ⏱️ 07.11.2024): ``` git clone https://github.com/MDIL-SNU/SevenNet ```
MLIP Arena Leaderboard (πŸ₯‰13 Β· ⭐ 47) - Fair and transparent benchmark of machine-learned interatomic potentials (MLIPs), beyond basic error metrics. Apache-2 ML-IAP community-resource - [GitHub](https://github.com/atomind-ai/mlip-arena) (πŸ‘¨β€πŸ’» 3 Β· πŸ”€ 1 Β· πŸ“¦ 2 Β· πŸ“‹ 10 - 70% open Β· ⏱️ 19.11.2024): ``` git clone https://github.com/atomind-ai/mlip-arena ```
GRACE (πŸ₯‰8 Β· ⭐ 10 Β· 🐣) - GRACE models and gracemaker (as implemented in TensorPotential package). Custom ML-IAP pretrained MD rep-learn rep-eng - [GitHub](https://github.com/ICAMS/grace-tensorpotential) (πŸ‘¨β€πŸ’» 3 Β· πŸ”€ 2 Β· πŸ“¦ 1 Β· ⏱️ 21.11.2024): ``` git clone https://github.com/ICAMS/grace-tensorpotential ```
Joint Multidomain Pre-Training (JMP) (πŸ₯‰5 Β· ⭐ 42) - Code for From Molecules to Materials Pre-training Large Generalizable Models for Atomic Property Prediction. CC-BY-NC-4.0 pretrained ML-IAP general-tool - [GitHub](https://github.com/facebookresearch/JMP) (πŸ‘¨β€πŸ’» 2 Β· πŸ”€ 6 Β· πŸ“‹ 5 - 40% open Β· ⏱️ 22.10.2024): ``` git clone https://github.com/facebookresearch/JMP ```


Unsupervised Learning

Back to top

Projects that focus on unsupervised learning (USL) for atomistic ML, such as dimensionality reduction, clustering and visualization.

DADApy (πŸ₯‡20 Β· ⭐ 110) - Distance-based Analysis of DAta-manifolds in python. Apache-2 - [GitHub](https://github.com/sissa-data-science/DADApy) (πŸ‘¨β€πŸ’» 20 Β· πŸ”€ 18 Β· πŸ“¦ 10 Β· πŸ“‹ 37 - 27% open Β· ⏱️ 20.11.2024): ``` git clone https://github.com/sissa-data-science/DADApy ``` - [PyPi](https://pypi.org/project/dadapy) (πŸ“₯ 520 / month Β· ⏱️ 20.11.2024): ``` pip install dadapy ```
ASAP (πŸ₯ˆ11 Β· ⭐ 140) - ASAP is a package that can quickly analyze and visualize datasets of crystal or molecular structures. MIT - [GitHub](https://github.com/BingqingCheng/ASAP) (πŸ‘¨β€πŸ’» 6 Β· πŸ”€ 28 Β· πŸ“¦ 7 Β· πŸ“‹ 25 - 24% open Β· ⏱️ 27.06.2024): ``` git clone https://github.com/BingqingCheng/ASAP ```
Show 5 hidden projects... - Sketchmap (πŸ₯ˆ9 Β· ⭐ 46 Β· πŸ’€) - Suite of programs to perform non-linear dimensionality reduction -- sketch-map in particular. GPL-3.0 C++ - Coarse-Graining-Auto-encoders (πŸ₯‰5 Β· ⭐ 21 Β· πŸ’€) - Implementation of coarse-graining Autoencoders. Unlicensed single-paper - paper-ml-robustness-material-property (πŸ₯‰5 Β· ⭐ 4 Β· πŸ’€) - A critical examination of robustness and generalizability of machine learning prediction of materials properties. BSD-3 datasets single-paper - KmdPlus (πŸ₯‰4 Β· ⭐ 4) - This module contains a class for treating kernel mean descriptor (KMD), and a function for generating descriptors with.. MIT - Descriptor Embedding and Clustering for Atomisitic-environment Framework (DECAF) ( ⭐ 2) - Provides a workflow to obtain clustering of local environments in dataset of structures. Unlicensed


Visualization

Back to top

Projects that focus on visualization (viz.) for atomistic ML.

Crystal Toolkit (πŸ₯‡25 Β· ⭐ 160) - Crystal Toolkit is a framework for building web apps for materials science and is currently powering the new Materials.. MIT - [GitHub](https://github.com/materialsproject/crystaltoolkit) (πŸ‘¨β€πŸ’» 30 Β· πŸ”€ 57 Β· πŸ“¦ 40 Β· πŸ“‹ 110 - 46% open Β· ⏱️ 22.10.2024): ``` git clone https://github.com/materialsproject/crystaltoolkit ``` - [PyPi](https://pypi.org/project/crystal-toolkit) (πŸ“₯ 4.7K / month Β· πŸ“¦ 10 Β· ⏱️ 22.10.2024): ``` pip install crystal-toolkit ```
pymatviz (πŸ₯ˆ22 Β· ⭐ 170) - A toolkit for visualizations in materials informatics. MIT general-tool probabilistic - [GitHub](https://github.com/janosh/pymatviz) (πŸ‘¨β€πŸ’» 9 Β· πŸ”€ 16 Β· πŸ“¦ 15 Β· πŸ“‹ 55 - 25% open Β· ⏱️ 21.11.2024): ``` git clone https://github.com/janosh/pymatviz ``` - [PyPi](https://pypi.org/project/pymatviz) (πŸ“₯ 5.4K / month Β· πŸ“¦ 4 Β· ⏱️ 21.11.2024): ``` pip install pymatviz ```
ZnDraw (πŸ₯ˆ21 Β· ⭐ 31 Β· πŸ“ˆ) - A powerful tool for visualizing, modifying, and analysing atomistic systems. EPL-2.0 MD generative JavaScript - [GitHub](https://github.com/zincware/ZnDraw) (πŸ‘¨β€πŸ’» 7 Β· πŸ”€ 4 Β· πŸ“¦ 8 Β· πŸ“‹ 350 - 27% open Β· ⏱️ 18.11.2024): ``` git clone https://github.com/zincware/ZnDraw ``` - [PyPi](https://pypi.org/project/zndraw) (πŸ“₯ 3.3K / month Β· πŸ“¦ 2 Β· ⏱️ 18.11.2024): ``` pip install zndraw ```
Chemiscope (πŸ₯‰19 Β· ⭐ 130 Β· πŸ“ˆ) - An interactive structure/property explorer for materials and molecules. BSD-3 JavaScript - [GitHub](https://github.com/lab-cosmo/chemiscope) (πŸ‘¨β€πŸ’» 24 Β· πŸ”€ 34 Β· πŸ“₯ 350 Β· πŸ“¦ 6 Β· πŸ“‹ 140 - 28% open Β· ⏱️ 14.11.2024): ``` git clone https://github.com/lab-cosmo/chemiscope ``` - [npm](https://www.npmjs.com/package/chemiscope) (πŸ“₯ 32 / month Β· πŸ“¦ 3 Β· ⏱️ 15.03.2023): ``` npm install chemiscope ```
Elementari (πŸ₯‰13 Β· ⭐ 140) - Interactive browser visualizations for materials science: periodic tables, 3d crystal structures, Bohr atoms, nuclei,.. MIT JavaScript - [GitHub](https://github.com/janosh/elementari) (πŸ‘¨β€πŸ’» 2 Β· πŸ”€ 12 Β· πŸ“¦ 3 Β· πŸ“‹ 7 - 28% open Β· ⏱️ 07.10.2024): ``` git clone https://github.com/janosh/elementari ``` - [npm](https://www.npmjs.com/package/elementari) (πŸ“₯ 390 / month Β· πŸ“¦ 1 Β· ⏱️ 15.01.2024): ``` npm install elementari ```
Show 1 hidden projects... - Atomvision (πŸ₯‰12 Β· ⭐ 29 Β· πŸ’€) - Deep learning framework for atomistic image data. Custom computer-vision experimental-data rep-learn


Wavefunction methods (ML-WFT)

Back to top

Projects and models that focus on quantities of wavefunction theory methods, such as Monte Carlo techniques like deep learning variational Monte Carlo (DL-VMC), quantum chemistry methods, etc.

DeepQMC (πŸ₯‡22 Β· ⭐ 360) - Deep learning quantum Monte Carlo for electrons in real space. MIT - [GitHub](https://github.com/deepqmc/deepqmc) (πŸ‘¨β€πŸ’» 13 Β· πŸ”€ 61 Β· πŸ“¦ 3 Β· πŸ“‹ 48 - 8% open Β· ⏱️ 23.10.2024): ``` git clone https://github.com/deepqmc/deepqmc ``` - [PyPi](https://pypi.org/project/deepqmc) (πŸ“₯ 630 / month Β· ⏱️ 24.09.2024): ``` pip install deepqmc ```
FermiNet (πŸ₯ˆ13 Β· ⭐ 740 Β· πŸ“‰) - An implementation of the Fermionic Neural Network for ab-initio electronic structure calculations. Apache-2 transformer - [GitHub](https://github.com/google-deepmind/ferminet) (πŸ‘¨β€πŸ’» 18 Β· πŸ”€ 130 Β· πŸ“‹ 53 - 1% open Β· ⏱️ 03.10.2024): ``` git clone https://github.com/google-deepmind/ferminet ```
DeepErwin (πŸ₯‰9 Β· ⭐ 53) - DeepErwin is a python 3.8+ package that implements and optimizes JAX 2.x wave function models for numerical solutions.. Custom - [GitHub](https://github.com/mdsunivie/deeperwin) (πŸ‘¨β€πŸ’» 7 Β· πŸ”€ 7 Β· πŸ“₯ 12 Β· ⏱️ 07.06.2024): ``` git clone https://github.com/mdsunivie/deeperwin ``` - [PyPi](https://pypi.org/project/deeperwin) (πŸ“₯ 290 / month Β· ⏱️ 14.12.2021): ``` pip install deeperwin ```
Show 2 hidden projects... - ACEpsi.jl (πŸ₯‰6 Β· ⭐ 2 Β· πŸ’€) - ACE wave function parameterizations. MIT rep-eng Julia - SchNOrb (πŸ₯‰5 Β· ⭐ 60 Β· πŸ’€) - Unifying machine learning and quantum chemistry with a deep neural network for molecular wavefunctions. MIT


Others

Back to top

Show 1 hidden projects...

Contribution

Contributions are encouraged and always welcome! If you like to add or update projects, choose one of the following ways:

If you like to contribute to or share suggestions regarding the project metadata collection or markdown generation, please refer to the best-of-generator repository. If you like to create your own best-of list, we recommend to follow this guide.

For more information on how to add or update projects, please read the contribution guidelines. By participating in this project, you agree to abide by its Code of Conduct.

License

CC0