JuliaMPC / MAVs

Michigan Autonomous Vehicles
14 stars 14 forks source link

Michigan Autonomous Vehicles

This software simulates autonomous vehicles within a ROS environment.

Documentation

STABLEmost recently tagged version of the documentation.

LATESTin-development version of the documentation.

Installation Instructions

These instructions depend on your machine's configuration.

Step 1, Install Docker

Remove any old versions of docker if they are on your machine:

sudo apt-get remove docker docker-engine docker.io

Update the apt package index:

sudo apt-get update

Install the packages to allow apt to use a repository through HTTPS:

sudo apt-get install \
   apt-transport-https \
   ca-certificates \
   curl \
   software-properties-common

Add the official GPG key of Docker:

curl -fsSL https://download.docker.com/linux/ubuntu/gpg | sudo apt-key add -

Verify that the command below print out 9DC8 5822 9FC7 DD38 854A E2D8 8D81 803C 0EBF CD88:

sudo apt-key fingerprint 0EBFCD88

Tell apt to use the stable repository by running the command below:

sudo add-apt-repository \
   "deb [arch=amd64] https://download.docker.com/linux/ubuntu \
   $(lsb_release -cs) \
   stable"

Update the apt package index and install Docker CE:

sudo apt-get update && apt-get install docker-ce

Check installation of docker:

docker run hello-world

Expected output

Step 2, Update NVIDIA Driver

Use the CUDA 10.1 Toolkit to install CUDA. An example of using this toolkit follows.

First, select your machine architecture

Next, download the .deb file provided

After the download is complete, cd into your ~\Downloads folder and follow the installation instructions provided by the toolkit to install CUDA:

sudo dpkg -i $HOME/Downloads/cuda-repo-ubuntu1604-10-1-local-10.1.105-418.39_1.0-1_amd64.deb
sudo apt-key add /var/cuda-repo-<version>/7fa2af80.pub
sudo apt-get update
sudo apt-get install cuda

Note: After you follow the first instruction, the <version> in the second instruction will be provided. For instance, in this example:

$HOME/Downloads/cuda-repo-ubuntu1604-10-1-local-10.1.105-418.39_1.0-1_amd64.deb

Produces:

Selecting previously unselected package cuda-repo-ubuntu1604-10-1-local-10.1.105-418.39.
(Reading database ... 551128 files and directories currently installed.)
Preparing to unpack .../cuda-repo-ubuntu1604-10-1-local-10.1.105-418.39_1.0-1_amd64.deb ...
Unpacking cuda-repo-ubuntu1604-10-1-local-10.1.105-418.39 (1.0-1) ...
Setting up cuda-repo-ubuntu1604-10-1-local-10.1.105-418.39 (1.0-1) ...

The public CUDA GPG key does not appear to be installed.
To install the key, run this command:
sudo apt-key add /var/cuda-repo-10-1-local-10.1.105-418.39/7fa2af80.pub

Thus add the key as instructed, before proceeding with the final instructions.

Reboot your computer and verify that the NVIDIA graphics driver can be loaded

nvidia-smi

which should produce something like this

Mon Jun 10 08:59:09 2019       
+-----------------------------------------------------------------------------+
| NVIDIA-SMI 418.67       Driver Version: 418.67       CUDA Version: 10.1     |
|-------------------------------+----------------------+----------------------+
| GPU  Name        Persistence-M| Bus-Id        Disp.A | Volatile Uncorr. ECC |
| Fan  Temp  Perf  Pwr:Usage/Cap|         Memory-Usage | GPU-Util  Compute M. |
|===============================+======================+======================|
|   0  GeForce GTX TITAN   On   | 00000000:03:00.0  On |                  N/A |
| 34%   50C    P8    17W / 250W |    433MiB /  6080MiB |      0%      Default |
+-------------------------------+----------------------+----------------------+

+-----------------------------------------------------------------------------+
| Processes:                                                       GPU Memory |
|  GPU       PID   Type   Process name                             Usage      |
|=============================================================================|
|    0      1895      G   /usr/lib/xorg/Xorg                            27MiB |
|    0      1965      G   /usr/bin/gnome-shell                          49MiB |
|    0      2943      G   /usr/lib/xorg/Xorg                           177MiB |
|    0      3103      G   /usr/bin/gnome-shell                          97MiB |
|    0      3511      G   ...uest-channel-token=13252725915974596027    76MiB |
+-----------------------------------------------------------------------------+

Step 3, Install NVIDIA-docker

If installed, remove NVIDIA docker 1.0:

docker volume ls -q -f driver=nvidia-docker | xargs -r -I{} -n1 docker ps -q -a -f volume={} | xargs -r docker rm -f
sudo apt-get purge -y nvidia-docker

Add the necessary repositories and update the apt package index and Install NVIDIA docker:

curl -s -L https://nvidia.github.io/nvidia-docker/gpgkey | sudo apt-key add - && \
distribution=$(. /etc/os-release;echo $ID$VERSION_ID) && \
curl -s -L https://nvidia.github.io/nvidia-docker/$distribution/nvidia-docker.list | sudo tee /etc/apt/sources.list.d/nvidia-docker.list && \
sudo apt-get update && \
sudo apt-get install -y nvidia-docker2 && \
sudo pkill -SIGHUP dockerd

Test NVIDIA docker installation:

docker run --runtime=nvidia --rm nvidia/cuda nvidia-smi

Step 4, Install MAVs

  1. Make a directory to store MAVs in, e.g., $HOME/Documents/workspace/MAVs. cd into that directory.
git clone https://github.com/JuliaMPC/MAVs
  1. Build image

    sh build.sh
  2. Test MAVs

First start Docker container in the MAVs folder:

./run.sh

Then, the most basic usage of MAVs is simply running the demos. For instance, demoA can be run as:

$roslaunch system demoA.launch

Example output

Tests

Unfortunately this software stack exceeds the time limit on Docker as well as Travis services (~45 min). So, while these services are configured, they cannot be utilized.
Docker Hub repo mavs build status

Build Status

Stable Latest