Jun-Jie-Shi / M2FTrans

[IEEE-JBHI'2024] M2FTrans: Modality-Masked Fusion Transformer for Incomplete Multi-Modality Brain Tumor Segmentation
https://doi.org/10.1109/JBHI.2023.3326151
MIT License
16 stars 3 forks source link
brats-dataset medical-image-segmentation missing-modalities pytorch-implementation transformer

M2FTrans: Modality-Masked Fusion Transformer for Incomplete Multi-Modality Brain Tumor Segmentation

This repository is the official PyTorch implementation of our work: M2FTrans: Modality-Masked Fusion Transformer for Incomplete Multi-Modality Brain Tumor Segmentation, presented at IEEE-JBHI 2024.

Setup

Environment

All our experiments are implemented based on the PyTorch framework with two 24G NVIDIA Geforce RTX 3090 GPUs, and we recommend installing the following package versions:

Dependency packages can be installed using following command:

conda create --name m2ftrans python=3.8
conda activate m2ftrans

pip install -r requirements.txt

Data preparation

We provide two different versions of training framework\, based on previous work RFNet and SMU-Net, corresponding to M2FTrans_v1 and M2FTrans_v2.

M2FTrans_v1

M2FTrans_v2

The folder structure is assumed to be:

M2FTrans/
├── BraTS
│   ├── BRATS2018_Training_none_npy
│   │   ├── seg
│   │   ├── vol
│   │   ├── ...
│   ├── BRATS2020_Training_none_npy
│   │   ├── seg
│   │   ├── vol
│   │   ├── ...
│   ├── BRATS2021_Training_none_npy
│   │   ├── seg
│   │   ├── vol
│   │   ├── test.txt
│   │   ├── train.txt
│   │   ├── val.txt
│   ├── BRATS2021_Training_Data
│   │   ├── ...
│   ├── MICCAI_BraTS_2018_Data_Training
│   │   ├── HGG
│   │   ├── LGG
│   │   ├── ...
├── M2FTrans_v1
│   ├── ...
├── M2FTrans_v2
│   ├── ...
└── ...

Training

M2FTrans_v1

M2FTrans_v2

Evaluation

Checking the relevant paths in path in eval.sh or eval.py.

M2FTrans_v1

bash eval.sh

M2FTrans_v2

python eval.py

Acknowledgement

The implementation is based on the repos: RFNet, mmFormer and SMU-Net, we'd like to express our gratitude to these open-source works.

Citations

Please consider citing this project in your publications if it helps your research. The following is a BibTeX reference. The BibTeX entry requires the url LaTeX package:

@ARTICLE{10288381,
  author={Shi, Junjie and Yu, Li and Cheng, Qimin and Yang, Xin and Cheng, Kwang-Ting and Yan, Zengqiang},
  journal={IEEE Journal of Biomedical and Health Informatics}, 
  title={MFTrans: Modality-Masked Fusion Transformer for Incomplete Multi-Modality Brain Tumor Segmentation}, 
  year={2024},
  volume={28},
  number={1},
  pages={379-390},
  doi={10.1109/JBHI.2023.3326151}}