This paper was accepted at AAAI 2022 SA poster session. [pdf]
[09/06/2022] Demo has been released on Try it now!
[06/17/2022] Now, fast inference mode offers a salient object result with the mask.
We have improved a result quality of salient object as follows.
You can get the more clear salient object by tuning the threshold.
We will release initializing TRACER with a version of pre-trained TE-x.
[04/20/2022] We update a pipeline for custom dataset inference w/o measuring.
TRACER
├── data
│ ├── custom_dataset
│ │ ├── sample_image1.png
│ │ ├── sample_image2.png
.
.
.
python main.py inference --dataset custom_dataset/ --arch 7 --img_size 640 --save_map True
All datasets are available in public.
TRACER
├── data
│ ├── DUTS
│ │ ├── Train
│ │ │ ├── images
│ │ │ ├── masks
│ │ │ ├── edges
│ │ ├── Test
│ │ │ ├── images
│ │ │ ├── masks
│ ├── DUT-O
│ │ ├── Test
│ │ │ ├── images
│ │ │ ├── masks
│ ├── HKU-IS
│ │ ├── Test
│ │ │ ├── images
│ │ │ ├── masks
.
.
.
# For training TRACER-TE0 (e.g.)
python main.py train --arch 0 --img_size 320
python main.py test --exp_num 0 --arch 0 --img_size 320
--arch: EfficientNet backbone scale: TE0 to TE7.
--frequency_radius: High-pass filter radius in the MEAM.
--gamma: channel confidence ratio \gamma in the UAM.
--denoise: Denoising ratio d in the OAM.
--RFB_aggregated_channel: # of channels in receptive field blocks.
--multi_gpu: Multi-GPU learning options.
--img_size: Input image resolution.
--save_map: Options saving predicted mask.
Model | Img size |
---|---|
TRACER-Efficient-0 ~ 1 | 320 |
TRACER-Efficient-2 | 352 |
TRACER-Efficient-3 | 384 |
TRACER-Efficient-4 | 448 |
TRACER-Efficient-5 | 512 |
TRACER-Efficient-6 | 576 |
TRACER-Efficient-7 | 640 |
@article{lee2021tracer,
title={TRACER: Extreme Attention Guided Salient Object Tracing Network},
author={Lee, Min Seok and Shin, WooSeok and Han, Sung Won},
journal={arXiv preprint arXiv:2112.07380},
year={2021}
}