KiseKloset / DM-VTON

πŸ‘— DM-VTON: Distilled Mobile Real-time Virtual Try-On
https://sites.google.com/view/ltnghia/research/DMVTON
Other
116 stars 22 forks source link
knowledge-distillation pytorch virtual-try-on viton

DM-VTON: Distilled Mobile Real-time Virtual Try-On

[[`Paper`](https://arxiv.org/abs/2308.13798)] [[`Colab Notebook`](https://colab.research.google.com/drive/1oLg0qe0nqLuIeaklzwbkk3IOKmMb0clk)] [[`Web Demo`](https://github.com/KiseKloset/KiseKloset)]
This is the official pytorch implementation of [DM-VTON: Distilled Mobile Real-time Virtual Try-On](https://arxiv.org/abs/2308.13798). DM-VTON is designed to be fast, lightweight, while maintaining the quality of the try-on image. It can achieve 40 frames per second on a single Nvidia Tesla T4 GPU and only take up 37 MB of memory.

πŸ“ Documentation

Installation

This source code has been developed and tested with python==3.10, as well as pytorch=1.13.1 and torchvision==0.14.1. We recommend using the conda package manager for installation.

  1. Clone this repo.

    git clone https://github.com/KiseKloset/DM-VTON.git
  2. Install dependencies with conda (we provide script scripts/install.sh).

    conda create -n dm-vton python=3.10
    conda activate dm-vton
    bash scripts/install.sh

Data Preparation

VITON

Because of copyright issues with the original VITON dataset, we use a resized version provided by CP-VTON. We followed the work of Han et al. to filter out duplicates and ensure no data leakage happens (VITON-Clean). You can download VITON-Clean dataset here.

VITON VITON-Clean
Training pairs 14221 6824
Testing pairs 2032 416

Dataset folder structure:

β”œβ”€β”€ VTON-Clean
|   β”œβ”€β”€ VITON_test
|   |   β”œβ”€β”€ test_pairs.txt
|   |   β”œβ”€β”€ test_img
β”‚   β”‚   β”œβ”€β”€ test_color
β”‚   β”‚   β”œβ”€β”€ test_edge
|   β”œβ”€β”€ VITON_traindata
|   |   β”œβ”€β”€ train_pairs.txt
|   |   β”œβ”€β”€ train_img
β”‚   β”‚   β”‚   β”œβ”€β”€ [000003_0.jpg | ...]  # Person
β”‚   β”‚   β”œβ”€β”€ train_color
β”‚   β”‚   β”‚   β”œβ”€β”€ [000003_1.jpg | ...]  # Garment
β”‚   β”‚   β”œβ”€β”€ train_edge
β”‚   β”‚   β”‚   β”œβ”€β”€ [000003_1.jpg | ...]  # Garment mask
β”‚   β”‚   β”œβ”€β”€ train_label
β”‚   β”‚   β”‚   β”œβ”€β”€ [000003_0.jpg | ...]  # Parsing map
β”‚   β”‚   β”œβ”€β”€ train_densepose
β”‚   β”‚   β”‚   β”œβ”€β”€ [000003_0.npy | ...]  # Densepose
β”‚   β”‚   β”œβ”€β”€ train_pose
β”‚   β”‚   β”‚   β”œβ”€β”€ [000003_0.json | ...] # Openpose

Inference

test.py run inference on image folders, then evaluate FID, LPIPS, runtime and save results to runs/TEST_DIR. Check the sample script for running: scripts/test.sh. You can download the pretrained checkpoints here.

Note: to run and save separate results for each pair [person, garment], set batch_size=1.

Training

For each dataset, you need to train a Teacher network first to guide the Student network. DM-VTON uses FS-VTON as the Teacher. Each model is trained through 2 stages: first stage only trains warping module and stage 2 trains the entire model (warping module + generator). Check the sample scripts for training both Teacher network (scripts/train_pb_warp + scripts/train_pb_e2e) and Student network (scripts/train_pf_warp + scripts/train_pf_e2e). We also provide a Colab notebook Colab as a quick tutorial.

Training Settings

A full list of trainning settings can be found in opt/train_opt.py. Below are some important settings.

πŸ“ˆ Result

Results on VITON

Methods FID $\downarrow$ Runtime (ms) $\downarrow$ Memory (MB) $\downarrow$
ACGPN (CVPR20) 33.3 153.6 565.9
PF-AFN (CVPR21) 27.3 35.8 293.3
C-VTON (WACV22) 37.1 66.9 168.6
SDAFN (ECCV22) 30.2 83.4 150.9
FS-VTON (CVPR22) 26.5 37.5 309.3
OURS 28.2 23.3 37.8

😎 Supported Models

We also support some parser-free models that can be used as Teacher and/or Student. The methods all have a 2-stage architecture (warping module and generator). For more details, see here.

Methods Source Teacher Student
PF-AFN Parser-Free Virtual Try-on via Distilling Appearance Flows βœ… βœ…
FS-VTON Style-Based Global Appearance Flow for Virtual Try-On βœ… βœ…
RMGN RMGN: A Regional Mask Guided Network for Parser-free Virtual Try-on ❌ βœ…
DM-VTON (Ours) DM-VTON: Distilled Mobile Real-time Virtual Try-On βœ… βœ…

β„Ή Citation

If our code or paper is helpful to your work, please consider citing:

@inproceedings{nguyen2023dm,
  title        = {DM-VTON: Distilled Mobile Real-time Virtual Try-On},
  author       = {Nguyen-Ngoc, Khoi-Nguyen and Phan-Nguyen, Thanh-Tung and Le, Khanh-Duy and Nguyen, Tam V and Tran, Minh-Triet and Le, Trung-Nghia},
  year         = 2023,
  booktitle    = {IEEE International Symposium on Mixed and Augmented Reality Adjunct (ISMAR-Adjunct)},
}

πŸ™ Acknowledgments

This code is based on PF-AFN.

πŸ“„ License

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License. The use of this code is for academic purposes only.