KrishnaswamyLab / graphtools

Tools for building and manipulating graphs in Python
GNU General Public License v3.0
41 stars 15 forks source link

========== graphtools

.. image:: https://img.shields.io/pypi/v/graphtools.svg :target: https://pypi.org/project/graphtools/ :alt: Latest PyPi version .. image:: https://anaconda.org/conda-forge/graphtools/badges/version.svg :target: https://anaconda.org/conda-forge/graphtools/ :alt: Latest Conda version .. image:: https://img.shields.io/github/workflow/status/KrishnaswamyLab/graphtools/Unit%20Tests/master?label=Github%20Actions :target: https://travis-ci.com/KrishnaswamyLab/graphtools :alt: Github Actions Build .. image:: https://img.shields.io/readthedocs/graphtools.svg :target: https://graphtools.readthedocs.io/ :alt: Read the Docs .. image:: https://coveralls.io/repos/github/KrishnaswamyLab/graphtools/badge.svg?branch=master :target: https://coveralls.io/github/KrishnaswamyLab/graphtools?branch=master :alt: Coverage Status .. image:: https://img.shields.io/twitter/follow/KrishnaswamyLab.svg?style=social&label=Follow :target: https://twitter.com/KrishnaswamyLab :alt: Twitter .. image:: https://img.shields.io/github/stars/KrishnaswamyLab/graphtools.svg?style=social&label=Stars :target: https://github.com/KrishnaswamyLab/graphtools/ :alt: GitHub stars .. image:: https://img.shields.io/badge/code%20style-black-000000.svg :target: https://github.com/psf/black :alt: Code style: black

Tools for building and manipulating graphs in Python.

Installation

graphtools is available on pip. Install by running the following in a terminal::

pip install --user graphtools

Alternatively, graphtools can be installed using Conda <https://conda.io/docs/> (most easily obtained via the Miniconda Python distribution <https://conda.io/miniconda.html>)::

conda install -c conda-forge graphtools

Or, to install the latest version from github::

pip install --user git+git://github.com/KrishnaswamyLab/graphtools.git

Usage example

The graphtools.Graph class provides an all-in-one interface for k-nearest neighbors, mutual nearest neighbors, exact (pairwise distances) and landmark graphs.

Use it as follows::

from sklearn import datasets
import graphtools
digits = datasets.load_digits()
G = graphtools.Graph(digits['data'])
K = G.kernel
P = G.diff_op
G = graphtools.Graph(digits['data'], n_landmark=300)
L = G.landmark_op

Help

If you have any questions or require assistance using graphtools, please contact us at https://krishnaswamylab.org/get-help