LFM-bot / IOCRec

Pytorch implementation for paper: Multi-Intention Oriented Contrastive Learning for Sequential Recommendation (WSDM23)
13 stars 0 forks source link

IOCRec

Pytorch implementation for paper: Multi-Intention Oriented Contrastive Learning for Sequential Recommendation (WSDM23).

We implement IOCRec in Pytorch and obtain quite similar results on Toys under the same experimental setting. The default hyper-parameters are set as the optimal values for Toys reported in the paper. Besides, the training log is available for reproduction.

2023-07-07 15:48:05 INFO     ------------------------------------------------Best Evaluation------------------------------------------------
2023-07-07 15:48:05 INFO     Best Result at Epoch: 33    Early Stop at Patience: 10
2023-07-07 15:48:05 INFO     hit@5:0.4513   hit@10:0.5453   hit@20:0.6621   hit@50:0.7935   ndcg@5:0.3588   ndcg@10:0.3891  ndcg@20:0.4186  ndcg@50:0.4455  
2023-07-07 15:48:07 INFO     -----------------------------------------------------Test Results------------------------------------------------------
2023-07-07 15:48:07 INFO     hit@5:0.4022   hit@10:0.5005   hit@20:0.6205   hit@50:0.7594   ndcg@5:0.3145   ndcg@10:0.3462  ndcg@20:0.3765  ndcg@50:0.4048  

Datasets

We provide Toys dataset.

Quick Start

You can run the model with the following code:

python runIOCRec.py --dataset toys --eval_mode uni100 --embed_size 64 --k_intention 4