Warning
Development for this repo has moved to https://github.com/janestreet/torch .
ocaml-torch provides some ocaml bindings for the PyTorch tensor library. This brings to OCaml NumPy-like tensor computations with GPU acceleration and tape-based automatic differentiation.
These bindings use the PyTorch C++ API and are mostly automatically generated. The current GitHub tip and the opam package v0.7 corresponds to PyTorch v2.0.0.
On Linux note that you will need the PyTorch version using the cxx11 abi cpu version, cuda 11.7 version.
The opam package can be installed using the following command. This automatically installs the CPU version of libtorch.
opam install torch
You can then compile some sample code, see some instructions below. ocaml-torch can also be used in interactive mode via utop or ocaml-jupyter.
Here is a sample utop session.
To build a first torch program, create a file example.ml
with the
following content.
open Torch
let () =
let tensor = Tensor.randn [ 4; 2 ] in
Tensor.print tensor
Then create a dune
file with the following content:
(executables
(names example)
(libraries torch))
Run dune exec example.exe
to compile the program and run it!
Alternatively you can first compile the code via dune build example.exe
then run the executable
_build/default/example.exe
(note that building the bytecode target example.bc
may
not work on macos).
Some more advanced applications from external repos:
Below is an example of a linear model trained on the MNIST dataset (full code).
(* Create two tensors to store model weights. *)
let ws = Tensor.zeros [image_dim; label_count] ~requires_grad:true in
let bs = Tensor.zeros [label_count] ~requires_grad:true in
let model xs = Tensor.(mm xs ws + bs) in
for index = 1 to 100 do
(* Compute the cross-entropy loss. *)
let loss =
Tensor.cross_entropy_for_logits (model train_images) ~targets:train_labels
in
Tensor.backward loss;
(* Apply gradient descent, disable gradient tracking for these. *)
Tensor.(no_grad (fun () ->
ws -= grad ws * f learning_rate;
bs -= grad bs * f learning_rate));
(* Compute the validation error. *)
let test_accuracy =
Tensor.(argmax ~dim:(-1) (model test_images) = test_labels)
|> Tensor.to_kind ~kind:(T Float)
|> Tensor.sum
|> Tensor.float_value
|> fun sum -> sum /. test_samples
in
printf "%d %f %.2f%%\n%!" index (Tensor.float_value loss) (100. *. test_accuracy);
done
Various pre-trained computer vision models are implemented in the vision library. The weight files can be downloaded at the following links:
Running the pre-trained models on some sample images can the easily be done via the following commands.
dune exec examples/pretrained/predict.exe path/to/resnet18.ot tiger.jpg
This alternative way to install ocaml-torch could be useful to run with GPU acceleration enabled.
The libtorch library can be downloaded from the PyTorch website (2.0.0 cpu version).
Download and extract the libtorch library then to build all the examples run:
export LIBTORCH=/path/to/libtorch
git clone https://github.com/LaurentMazare/ocaml-torch.git
cd ocaml-torch
make all