LiMeng95 / MultiPoseNet.pytorch

pytorch implementation of MultiPoseNet (ECCV 2018, Muhammed Kocabas et al.)
196 stars 32 forks source link
human-pose-estimation multiposenet pose-estimation pytorch pytorch-implementation

Introduction

This is a pytorch implementation of MultiPoseNet ( ECCV 2018, Muhammed Kocabas et al.)

baseline checkpoint result

License

Contents

  1. Update

  2. Requirements

  3. Training

  4. Validation

  5. Demo

  6. Result

  7. Acknowledgements

  8. Citation

Demo

Run inference on your own pictures.

Result

 Average Precision  (AP) @[ IoU=0.50:0.95 | area=   all | maxDets= 20 ] = 0.590
 Average Precision  (AP) @[ IoU=0.50      | area=   all | maxDets= 20 ] = 0.791
 Average Precision  (AP) @[ IoU=0.75      | area=   all | maxDets= 20 ] = 0.644
 Average Precision  (AP) @[ IoU=0.50:0.95 | area=medium | maxDets= 20 ] = 0.565
 Average Precision  (AP) @[ IoU=0.50:0.95 | area= large | maxDets= 20 ] = 0.636
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=   all | maxDets= 20 ] = 0.644
 Average Recall     (AR) @[ IoU=0.50      | area=   all | maxDets= 20 ] = 0.810
 Average Recall     (AR) @[ IoU=0.75      | area=   all | maxDets= 20 ] = 0.689
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=medium | maxDets= 20 ] = 0.601
 Average Recall     (AR) @[ IoU=0.50:0.95 | area= large | maxDets= 20 ] = 0.709

Requirements

Prerequisites

# PYTORCH=/path/to/pytorch
# for pytorch v0.4.0
sed -i "1194s/torch\.backends\.cudnn\.enabled/False/g" ${PYTORCH}/torch/nn/functional.py
# for pytorch v0.4.1
sed -i "1254s/torch\.backends\.cudnn\.enabled/False/g" ${PYTORCH}/torch/nn/functional.py

# Note that instructions like # PYTORCH=/path/to/pytorch indicate that you should pick 
# a path where you'd like to have pytorch installed and then set an environment
# variable (PYTORCH in this case) accordingly.

Data preparation

You can skip this step if you just want to run inference on your own pictures using our baseline checkpoint

Make them look like this:

${COCO_ROOT}
   --annotations
      --instances_train2017.json
      --instances_val2017.json
      --person_keypoints_train2017.json
      --person_keypoints_val2017.json
   --images
      --train2014
      --val2014
      --train2017
      --val2017
   --mask2014
   --COCO.json

Training

Validation

To Do

Update

Acknowledgements