Official implementation of HSIGene: A Foundation Model For Hyperspectral Image Generation.
conda create -n hsigene python=3.9
conda activate hsigene
pip install -r requirements.txt
Download models for hyperspectral image synthesis from GoogleDrive and put it to checkpoints
.
Running the following script and the generated HSIs will be saved at save_uncond
.
python inference_uncond.py --num-samples 10 --ddim-steps 50 --save-dir save_uncond
checkpoints
. data_prepare/annotator/ckpts/clip/clip-vit-large-patch14
, or download the clip
folder from BaiduNetdisk (code:n86f) and put it to data_prepare/annotator/ckpts
.save_cond
. Available conditions include hed, mlsd, sketch, segmentation, content and text. Example images and conditions are provided in data_prepare/candidates
and data_prepare/conditions
respectively.
# hed
python inference_single.py --conditions hed --fns f4 --condition-dir data_prepare/conditions --save-dir save_cond
python inference_single.py --conditions mlsd --fns c3 --condition-dir data_prepare/conditions --save-dir save_cond
python inference_single.py --conditions sketch --fns a2 --condition-dir data_prepare/conditions --save-dir save_cond
python inference_single.py --conditions segmentation --fns w5 --condition-dir data_prepare/conditions --save-dir save_cond
python inference_single.py --conditions content --fns a1 --condition-dir data_prepare/conditions --save-dir save_cond
python inference_single.py --conditions text --prompt Wasteland --fns Wasteland --save-dir save_cond
python inference_single.py --conditions 'mlsd segmentation' --fns c2 --condition-dir data_prepare/conditions --save-dir save_cond
### Prepare Your Own Conditions
To prepare the conditions, you have to put the original images into `data_prepare/candidates`. In addition, models for condition generation could be downloaded automatically or manually downloaded from [BaiduNetdisk](https://pan.baidu.com/s/1K1Y__blA6uJVV9l1QG7QvQ?pwd=98f1) (code:98f1) and need to be put to `data_prepare/annotator/ckpts`.
Then, you can obtain you own conditions simply by:
cd data_prepare python data_prepare.py
## Contact
If you have any question, please email `pp2373886592@gmail.com`
## Citation
@misc{pang2024hsigenefoundationmodelhyperspectral, title={HSIGene: A Foundation Model For Hyperspectral Image Generation}, author={Li Pang and Datao Tang and Shuang Xu and Deyu Meng and Xiangyong Cao}, year={2024}, eprint={2409.12470}, archivePrefix={arXiv}, primaryClass={cs.CV}, url={https://arxiv.org/abs/2409.12470}, }