Lightning-AI / pytorch-lightning

Pretrain, finetune ANY AI model of ANY size on multiple GPUs, TPUs with zero code changes.
https://lightning.ai
Apache License 2.0
28.55k stars 3.4k forks source link

Gradients seem not synchronized with manual optimization and DDPStrategy with `static_graph=True` #18086

Open function2-llx opened 1 year ago

function2-llx commented 1 year ago

Bug description

Gradients seem not synchronized with manual optimization and DDPStrategy with static_graph=True.

What version are you seeing the problem on?

v2.0.5

How to reproduce the bug

Create main.py, and run python main.py fit with two GPUs:

# main.py
from lightning.pytorch.cli import LightningCLI
from lightning.pytorch.demos.boring_classes import BoringModel
from lightning.pytorch.strategies import DDPStrategy

class MyModel(BoringModel):
    def __init__(self):
        super().__init__()
        self.automatic_optimization = False

    def training_step(self, batch, batch_idx: int):
        optimizer = self.optimizers()
        optimizer.zero_grad()
        out = super().training_step(batch, batch_idx)
        loss = out['loss']
        self.manual_backward(loss)
        optimizer.step()

    def on_train_batch_end(self, *args, **kwargs):
        print(self.layer.bias.grad, f'[rank {self.global_rank}] grad')
        print(self.layer.bias, f'[rank {self.global_rank}]')

def main():
    LightningCLI(
        MyModel,
        save_config_kwargs={'overwrite': True},
        trainer_defaults={
            'strategy': DDPStrategy(static_graph=True),
            'max_steps': 1,
            'enable_progress_bar': False,
        },
        seed_everything_default=42,
    )

if __name__ == '__main__':
    main()

Error messages and logs

The outputs of the script above are as follows, the gradients are not synchronized.:

tensor([-1.8170, -1.3621], device='cuda:0') [rank 0] grad
tensor([-1.1449, -2.1265], device='cuda:1') [rank 1] grad
Parameter containing:
tensor([0.2359, 0.0994], device='cuda:0', requires_grad=True) [rank 0]
Parameter containing:
tensor([0.1687, 0.1758], device='cuda:1', requires_grad=True) [rank 1]

When setting static_graph=False or using automatic optimization, the outputs are as follows, the gradients are synchronized:

tensor([-1.4809, -1.7443], device='cuda:0') [rank 0] grad
tensor([-1.4809, -1.7443], device='cuda:1') [rank 1] grad
Parameter containing:
tensor([0.2023, 0.1376], device='cuda:0', requires_grad=True) [rank 0]
Parameter containing:
tensor([0.2023, 0.1376], device='cuda:1', requires_grad=True) [rank 1]

Environment

Current environment ``` #- PyTorch Lightning Version (e.g., 1.5.0): 2.0.5 #- PyTorch Version (e.g., 2.0): 2.0.1 #- Python version (e.g., 3.9): 3.11.4 #- OS (e.g., Linux): Linux #- How you installed Lightning(`conda`, `pip`, source): pip ```

More info

No response

Tenich commented 5 months ago

I experience the same with pytorch-lightning==2.3.0. I think it might be caused by this line.