Lightning-AI / pytorch-lightning

Pretrain, finetune ANY AI model of ANY size on multiple GPUs, TPUs with zero code changes.
https://lightning.ai
Apache License 2.0
28.44k stars 3.39k forks source link
ai artificial-intelligence data-science deep-learning machine-learning python pytorch
Lightning

**The deep learning framework to pretrain, finetune and deploy AI models.** **NEW- Deploying models? Check out [LitServe](https://github.com/Lightning-AI/litserve), the PyTorch Lightning for model serving** ______________________________________________________________________

Quick startExamplesPyTorch LightningFabricLightning AICommunityDocs

[![PyPI - Python Version](https://img.shields.io/pypi/pyversions/pytorch-lightning)](https://pypi.org/project/pytorch-lightning/) [![PyPI Status](https://badge.fury.io/py/pytorch-lightning.svg)](https://badge.fury.io/py/pytorch-lightning) [![PyPI - Downloads](https://img.shields.io/pypi/dm/pytorch-lightning)](https://pepy.tech/project/pytorch-lightning) [![Conda](https://img.shields.io/conda/v/conda-forge/lightning?label=conda&color=success)](https://anaconda.org/conda-forge/lightning) [![codecov](https://codecov.io/gh/Lightning-AI/pytorch-lightning/graph/badge.svg?token=SmzX8mnKlA)](https://codecov.io/gh/Lightning-AI/pytorch-lightning) [![Discord](https://img.shields.io/discord/1077906959069626439?style=plastic)](https://discord.gg/VptPCZkGNa) ![GitHub commit activity](https://img.shields.io/github/commit-activity/w/lightning-ai/lightning) [![license](https://img.shields.io/badge/License-Apache%202.0-blue.svg)](https://github.com/Lightning-AI/lightning/blob/master/LICENSE)

  Get started

 

Lightning has 2 core packages

PyTorch Lightning: Train and deploy PyTorch at scale.
Lightning Fabric: Expert control.

Lightning gives you granular control over how much abstraction you want to add over PyTorch.

 

Quick start

Install Lightning:

pip install lightning
Advanced install options #### Install with optional dependencies ```bash pip install lightning['extra'] ``` #### Conda ```bash conda install lightning -c conda-forge ``` #### Install stable version Install future release from the source ```bash pip install https://github.com/Lightning-AI/lightning/archive/refs/heads/release/stable.zip -U ``` #### Install bleeding-edge Install nightly from the source (no guarantees) ```bash pip install https://github.com/Lightning-AI/lightning/archive/refs/heads/master.zip -U ``` or from testing PyPI ```bash pip install -iU https://test.pypi.org/simple/ pytorch-lightning ```

PyTorch Lightning example

Define the training workflow. Here's a toy example (explore real examples):

# main.py
# ! pip install torchvision
import torch, torch.nn as nn, torch.utils.data as data, torchvision as tv, torch.nn.functional as F
import lightning as L

# --------------------------------
# Step 1: Define a LightningModule
# --------------------------------
# A LightningModule (nn.Module subclass) defines a full *system*
# (ie: an LLM, diffusion model, autoencoder, or simple image classifier).

class LitAutoEncoder(L.LightningModule):
    def __init__(self):
        super().__init__()
        self.encoder = nn.Sequential(nn.Linear(28 * 28, 128), nn.ReLU(), nn.Linear(128, 3))
        self.decoder = nn.Sequential(nn.Linear(3, 128), nn.ReLU(), nn.Linear(128, 28 * 28))

    def forward(self, x):
        # in lightning, forward defines the prediction/inference actions
        embedding = self.encoder(x)
        return embedding

    def training_step(self, batch, batch_idx):
        # training_step defines the train loop. It is independent of forward
        x, _ = batch
        x = x.view(x.size(0), -1)
        z = self.encoder(x)
        x_hat = self.decoder(z)
        loss = F.mse_loss(x_hat, x)
        self.log("train_loss", loss)
        return loss

    def configure_optimizers(self):
        optimizer = torch.optim.Adam(self.parameters(), lr=1e-3)
        return optimizer

# -------------------
# Step 2: Define data
# -------------------
dataset = tv.datasets.MNIST(".", download=True, transform=tv.transforms.ToTensor())
train, val = data.random_split(dataset, [55000, 5000])

# -------------------
# Step 3: Train
# -------------------
autoencoder = LitAutoEncoder()
trainer = L.Trainer()
trainer.fit(autoencoder, data.DataLoader(train), data.DataLoader(val))

Run the model on your terminal

pip install torchvision
python main.py

 

Why PyTorch Lightning?

PyTorch Lightning is just organized PyTorch - Lightning disentangles PyTorch code to decouple the science from the engineering.

PT to PL

 


Examples

Explore various types of training possible with PyTorch Lightning. Pretrain and finetune ANY kind of model to perform ANY task like classification, segmentation, summarization and more:

Task Description Run
Hello world Pretrain - Hello world example Open In Studio
Image classification Finetune - ResNet-34 model to classify images of cars Open In Studio
Image segmentation Finetune - ResNet-50 model to segment images Open In Studio
Object detection Finetune - Faster R-CNN model to detect objects Open In Studio
Text classification Finetune - text classifier (BERT model) Open In Studio
Text summarization Finetune - text summarization (Hugging Face transformer model) Open In Studio
Audio generation Finetune - audio generator (transformer model) Open In Studio
LLM finetuning Finetune - LLM (Meta Llama 3.1 8B) Open In Studio
Image generation Pretrain - Image generator (diffusion model) Open In Studio
Recommendation system Train - recommendation system (factorization and embedding) Open In Studio
Time-series forecasting Train - Time-series forecasting with LSTM Open In Studio

Advanced features

Lightning has over 40+ advanced features designed for professional AI research at scale.

Here are some examples:

Train on 1000s of GPUs without code changes ```python # 8 GPUs # no code changes needed trainer = Trainer(accelerator="gpu", devices=8) # 256 GPUs trainer = Trainer(accelerator="gpu", devices=8, num_nodes=32) ```
Train on other accelerators like TPUs without code changes ```python # no code changes needed trainer = Trainer(accelerator="tpu", devices=8) ```
16-bit precision ```python # no code changes needed trainer = Trainer(precision=16) ```
Experiment managers ```python from lightning import loggers # tensorboard trainer = Trainer(logger=TensorBoardLogger("logs/")) # weights and biases trainer = Trainer(logger=loggers.WandbLogger()) # comet trainer = Trainer(logger=loggers.CometLogger()) # mlflow trainer = Trainer(logger=loggers.MLFlowLogger()) # neptune trainer = Trainer(logger=loggers.NeptuneLogger()) # ... and dozens more ```
Early Stopping ```python es = EarlyStopping(monitor="val_loss") trainer = Trainer(callbacks=[es]) ```
Checkpointing ```python checkpointing = ModelCheckpoint(monitor="val_loss") trainer = Trainer(callbacks=[checkpointing]) ```
Export to torchscript (JIT) (production use) ```python # torchscript autoencoder = LitAutoEncoder() torch.jit.save(autoencoder.to_torchscript(), "model.pt") ```
Export to ONNX (production use) ```python # onnx with tempfile.NamedTemporaryFile(suffix=".onnx", delete=False) as tmpfile: autoencoder = LitAutoEncoder() input_sample = torch.randn((1, 64)) autoencoder.to_onnx(tmpfile.name, input_sample, export_params=True) os.path.isfile(tmpfile.name) ```

Advantages over unstructured PyTorch


Read the PyTorch Lightning docs

   

Lightning Fabric: Expert control

Run on any device at any scale with expert-level control over PyTorch training loop and scaling strategy. You can even write your own Trainer.

Fabric is designed for the most complex models like foundation model scaling, LLMs, diffusion, transformers, reinforcement learning, active learning. Of any size.

What to change Resulting Fabric Code (copy me!)
```diff + import lightning as L import torch; import torchvision as tv dataset = tv.datasets.CIFAR10("data", download=True, train=True, transform=tv.transforms.ToTensor()) + fabric = L.Fabric() + fabric.launch() model = tv.models.resnet18() optimizer = torch.optim.SGD(model.parameters(), lr=0.001) - device = "cuda" if torch.cuda.is_available() else "cpu" - model.to(device) + model, optimizer = fabric.setup(model, optimizer) dataloader = torch.utils.data.DataLoader(dataset, batch_size=8) + dataloader = fabric.setup_dataloaders(dataloader) model.train() num_epochs = 10 for epoch in range(num_epochs): for batch in dataloader: inputs, labels = batch - inputs, labels = inputs.to(device), labels.to(device) optimizer.zero_grad() outputs = model(inputs) loss = torch.nn.functional.cross_entropy(outputs, labels) - loss.backward() + fabric.backward(loss) optimizer.step() print(loss.data) ``` ```Python import lightning as L import torch; import torchvision as tv dataset = tv.datasets.CIFAR10("data", download=True, train=True, transform=tv.transforms.ToTensor()) fabric = L.Fabric() fabric.launch() model = tv.models.resnet18() optimizer = torch.optim.SGD(model.parameters(), lr=0.001) model, optimizer = fabric.setup(model, optimizer) dataloader = torch.utils.data.DataLoader(dataset, batch_size=8) dataloader = fabric.setup_dataloaders(dataloader) model.train() num_epochs = 10 for epoch in range(num_epochs): for batch in dataloader: inputs, labels = batch optimizer.zero_grad() outputs = model(inputs) loss = torch.nn.functional.cross_entropy(outputs, labels) fabric.backward(loss) optimizer.step() print(loss.data) ```

Key features

Easily switch from running on CPU to GPU (Apple Silicon, CUDA, …), TPU, multi-GPU or even multi-node training ```python # Use your available hardware # no code changes needed fabric = Fabric() # Run on GPUs (CUDA or MPS) fabric = Fabric(accelerator="gpu") # 8 GPUs fabric = Fabric(accelerator="gpu", devices=8) # 256 GPUs, multi-node fabric = Fabric(accelerator="gpu", devices=8, num_nodes=32) # Run on TPUs fabric = Fabric(accelerator="tpu") ```
Use state-of-the-art distributed training strategies (DDP, FSDP, DeepSpeed) and mixed precision out of the box ```python # Use state-of-the-art distributed training techniques fabric = Fabric(strategy="ddp") fabric = Fabric(strategy="deepspeed") fabric = Fabric(strategy="fsdp") # Switch the precision fabric = Fabric(precision="16-mixed") fabric = Fabric(precision="64") ```
All the device logic boilerplate is handled for you ```diff # no more of this! - model.to(device) - batch.to(device) ```
Build your own custom Trainer using Fabric primitives for training checkpointing, logging, and more ```python import lightning as L class MyCustomTrainer: def __init__(self, accelerator="auto", strategy="auto", devices="auto", precision="32-true"): self.fabric = L.Fabric(accelerator=accelerator, strategy=strategy, devices=devices, precision=precision) def fit(self, model, optimizer, dataloader, max_epochs): self.fabric.launch() model, optimizer = self.fabric.setup(model, optimizer) dataloader = self.fabric.setup_dataloaders(dataloader) model.train() for epoch in range(max_epochs): for batch in dataloader: input, target = batch optimizer.zero_grad() output = model(input) loss = loss_fn(output, target) self.fabric.backward(loss) optimizer.step() ``` You can find a more extensive example in our [examples](examples/fabric/build_your_own_trainer)

Read the Lightning Fabric docs

   

Examples

Self-supervised Learning
Convolutional Architectures
Reinforcement Learning
GANs
Classic ML

   

Continuous Integration

Lightning is rigorously tested across multiple CPUs, GPUs and TPUs and against major Python and PyTorch versions.

*Codecov is > 90%+ but build delays may show less
Current build statuses
| System / PyTorch ver. | 1.13 | 2.0 | 2.1 | | :--------------------------------: | :-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------: | :-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------: |:-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------:| | Linux py3.9 \[GPUs\] | | | [![Build Status](https://dev.azure.com/Lightning-AI/lightning/_apis/build/status%2Fpytorch-lightning%20%28GPUs%29?branchName=master)](https://dev.azure.com/Lightning-AI/lightning/_build/latest?definitionId=24&branchName=master) | | Linux (multiple Python versions) | [![Test PyTorch](https://github.com/Lightning-AI/lightning/actions/workflows/ci-tests-pytorch.yml/badge.svg)](https://github.com/Lightning-AI/lightning/actions/workflows/ci-tests-pytorch.yml) | [![Test PyTorch](https://github.com/Lightning-AI/lightning/actions/workflows/ci-tests-pytorch.yml/badge.svg)](https://github.com/Lightning-AI/lightning/actions/workflows/ci-tests-pytorch.yml) | [![Test PyTorch](https://github.com/Lightning-AI/lightning/actions/workflows/ci-tests-pytorch.yml/badge.svg)](https://github.com/Lightning-AI/lightning/actions/workflows/ci-tests-pytorch.yml) | | OSX (multiple Python versions) | [![Test PyTorch](https://github.com/Lightning-AI/lightning/actions/workflows/ci-tests-pytorch.yml/badge.svg)](https://github.com/Lightning-AI/lightning/actions/workflows/ci-tests-pytorch.yml) | [![Test PyTorch](https://github.com/Lightning-AI/lightning/actions/workflows/ci-tests-pytorch.yml/badge.svg)](https://github.com/Lightning-AI/lightning/actions/workflows/ci-tests-pytorch.yml) | [![Test PyTorch](https://github.com/Lightning-AI/lightning/actions/workflows/ci-tests-pytorch.yml/badge.svg)](https://github.com/Lightning-AI/lightning/actions/workflows/ci-tests-pytorch.yml) | | Windows (multiple Python versions) | [![Test PyTorch](https://github.com/Lightning-AI/lightning/actions/workflows/ci-tests-pytorch.yml/badge.svg)](https://github.com/Lightning-AI/lightning/actions/workflows/ci-tests-pytorch.yml) | [![Test PyTorch](https://github.com/Lightning-AI/lightning/actions/workflows/ci-tests-pytorch.yml/badge.svg)](https://github.com/Lightning-AI/lightning/actions/workflows/ci-tests-pytorch.yml) | [![Test PyTorch](https://github.com/Lightning-AI/lightning/actions/workflows/ci-tests-pytorch.yml/badge.svg)](https://github.com/Lightning-AI/lightning/actions/workflows/ci-tests-pytorch.yml) |

   

Community

The lightning community is maintained by

Want to help us build Lightning and reduce boilerplate for thousands of researchers? Learn how to make your first contribution here

Lightning is also part of the PyTorch ecosystem which requires projects to have solid testing, documentation and support.

Asking for help

If you have any questions please:

  1. Read the docs.
  2. Search through existing Discussions, or add a new question
  3. Join our discord.