Lightning-AI / pytorch-lightning

Pretrain, finetune ANY AI model of ANY size on multiple GPUs, TPUs with zero code changes.
https://lightning.ai
Apache License 2.0
28.31k stars 3.38k forks source link

ModelCheckpoint could not find key in returned metrics #20046

Open TheAeryan opened 4 months ago

TheAeryan commented 4 months ago

Bug description

I have a model with several ModelCheckpoint callbacks. When loading it from a checkpoint using trainer.fit(model, datamodule=dm, ckpt_path=training_ckpt_path), I get the following error:

lightning_fabric.utilities.exceptions.MisconfigurationException: `ModelCheckpoint(monitor='v_nll_unsupervised')` could not find the monitored key in the returned metrics: 
['v_nll_supervised_encoder', 'v_nll_supervised_decoder', 'v_nll_supervised', 'v_nll', 'v_nll_supervised_encoder_clip', 'v_nll_supervised_decoder_clip', 'v_nll_supervised_c
lip', 'v_nll_clip', 'v_mse_supervised_encoder', 'v_mse_supervised_decoder', 'v_mse_encoder', 'v_mse_decoder', 'v_mse', 'v_mse_supervised_encoder_clip', 'v_mse_supervised_d
ecoder_clip', 'v_mse_encoder_clip', 'v_mse_decoder_clip', 'v_mse_clip', 'v_baseline_l_mse_supervised', 'v_baseline_l_mse', 'v_baseline_prior_mse_supervised', 'v_baseline_p
rior_mse', 'v_mu_supervised_encoder', 'v_mu_supervised_decoder', 'v_mu_encoder', 'v_mu_decoder', 'v_sigma_supervised_encoder', 'v_sigma_supervised_decoder', 'v_sigma_encod
er', 'v_sigma_decoder', 'hp_metric', 'epoch', 'step']. HINT: Did you call `log('v_nll_unsupervised', value)` in the `LightningModule`?

The issue seems to be that the v_nll_unsupervised metric was not logged with the log(...) method, so the ModelCheckpoint callback can't find it. However, although I don't log this metric at every validation step, it is logged at least once every validation epoch. Since I use on_step=False, on_epoch=True when logging metrics, I would expect that the whole validation epoch would end before the ModelCheckpoint callback tries to access this metric, in which case it would exist and no error would be raised. Nonetheless, it seems this metric is being accessed just after the first validation iteration.

I thought that maybe this was due to the sanity checking process when training starts. However, setting num_sanity_val_steps=0 or num_sanity_val_steps=-1 in the Trainer did not solve anything.

What version are you seeing the problem on?

v2.1

How to reproduce the bug

No response

Error messages and logs

lightning_fabric.utilities.exceptions.MisconfigurationException: `ModelCheckpoint(monitor='v_nll_unsupervised')` could not find the monitored key in the returned metrics: 
['v_nll_supervised_encoder', 'v_nll_supervised_decoder', 'v_nll_supervised', 'v_nll', 'v_nll_supervised_encoder_clip', 'v_nll_supervised_decoder_clip', 'v_nll_supervised_c
lip', 'v_nll_clip', 'v_mse_supervised_encoder', 'v_mse_supervised_decoder', 'v_mse_encoder', 'v_mse_decoder', 'v_mse', 'v_mse_supervised_encoder_clip', 'v_mse_supervised_d
ecoder_clip', 'v_mse_encoder_clip', 'v_mse_decoder_clip', 'v_mse_clip', 'v_baseline_l_mse_supervised', 'v_baseline_l_mse', 'v_baseline_prior_mse_supervised', 'v_baseline_p
rior_mse', 'v_mu_supervised_encoder', 'v_mu_supervised_decoder', 'v_mu_encoder', 'v_mu_decoder', 'v_sigma_supervised_encoder', 'v_sigma_supervised_decoder', 'v_sigma_encod
er', 'v_sigma_decoder', 'hp_metric', 'epoch', 'step']. HINT: Did you call `log('v_nll_unsupervised', value)` in the `LightningModule`?

Environment

Current environment * CUDA: - GPU: - Tesla V100-PCIE-16GB - Tesla V100-PCIE-16GB - available: True - version: 11.7 * Lightning: - lightning-cloud: 0.5.37 - lightning-utilities: 0.8.0 - pytorch-lightning: 2.1.0 - pytorch-ranger: 0.1.1 - torch: 2.0.1 - torch-optimizer: 0.3.0 - torch-scatter: 2.1.1 - torchmetrics: 0.11.4 * Packages: - absl-py: 1.4.0 - aiohttp: 3.8.4 - aiosignal: 1.3.1 - ansicolors: 1.1.8 - antlr4-python3-runtime: 4.7.2 - anyio: 3.7.1 - arrow: 1.2.3 - async-timeout: 4.0.2 - attrs: 23.1.0 - backoff: 2.2.1 - beautifulsoup4: 4.12.2 - blessed: 1.20.0 - boto: 2.49.0 - cachetools: 5.3.1 - certifi: 2023.5.7 - charset-normalizer: 3.1.0 - click: 8.1.3 - cmake: 3.26.4 - contourpy: 1.1.0 - croniter: 1.4.1 - cycler: 0.11.0 - dateutils: 0.6.12 - deepdiff: 6.3.1 - exceptiongroup: 1.1.2 - fastapi: 0.100.0 - filelock: 3.12.2 - fonttools: 4.40.0 - frozenlist: 1.3.3 - fsspec: 2023.6.0 - google-auth: 2.20.0 - google-auth-oauthlib: 1.0.0 - gprof2dot: 2022.7.29 - graphviz: 0.20.1 - grpcio: 1.51.3 - h11: 0.14.0 - idna: 3.4 - importlib-metadata: 6.7.0 - importlib-resources: 5.12.0 - inquirer: 3.1.3 - itsdangerous: 2.1.2 - jinja2: 3.1.2 - joblib: 1.2.0 - jsonschema: 4.17.3 - kiwisolver: 1.4.4 - lifted-pddl: 1.2.2 - lightning-cloud: 0.5.37 - lightning-utilities: 0.8.0 - lit: 16.0.6 - markdown: 3.4.3 - markdown-it-py: 3.0.0 - markupsafe: 2.1.3 - matplotlib: 3.7.1 - mdurl: 0.1.2 - mpmath: 1.3.0 - msgpack: 1.0.5 - multidict: 6.0.4 - multipledispatch: 0.6.0 - mypy: 1.3.0 - mypy-extensions: 1.0.0 - networkx: 3.1 - numpy: 1.25.0 - nvidia-cublas-cu11: 11.10.3.66 - nvidia-cuda-cupti-cu11: 11.7.101 - nvidia-cuda-nvrtc-cu11: 11.7.99 - nvidia-cuda-runtime-cu11: 11.7.99 - nvidia-cudnn-cu11: 8.5.0.96 - nvidia-cufft-cu11: 10.9.0.58 - nvidia-curand-cu11: 10.2.10.91 - nvidia-cusolver-cu11: 11.4.0.1 - nvidia-cusparse-cu11: 11.7.4.91 - nvidia-nccl-cu11: 2.14.3 - nvidia-nvtx-cu11: 11.7.91 - oauthlib: 3.2.2 - ordered-set: 4.1.0 - packaging: 23.1 - pandas: 2.0.2 - pddl-generators: 1.0 - pillow: 9.5.0 - pip: 23.1.2 - protobuf: 4.23.3 - psutil: 5.9.5 - pyarrow: 12.0.1 - pyasn1: 0.5.0 - pyasn1-modules: 0.3.0 - pydantic: 1.10.11 - pygments: 2.15.1 - pyjwt: 2.7.0 - pynvml: 11.5.0 - pyparsing: 3.1.0 - pyperplan: 2.1 - pyrsistent: 0.19.3 - python-dateutil: 2.8.2 - python-editor: 1.0.4 - python-multipart: 0.0.6 - pytorch-lightning: 2.1.0 - pytorch-ranger: 0.1.1 - pytz: 2023.3 - pyyaml: 6.0 - ray: 2.5.0 - readchar: 4.0.5 - requests: 2.31.0 - requests-oauthlib: 1.3.1 - rich: 13.4.2 - rsa: 4.9 - scikit-learn: 1.2.2 - scipy: 1.10.1 - seaborn: 0.12.2 - setuptools: 67.7.2 - six: 1.16.0 - snakeviz: 2.2.0 - sniffio: 1.3.0 - soupsieve: 2.4.1 - stable-trunc-gaussian: 1.3.9 - starlette: 0.27.0 - starsessions: 1.3.0 - strips-hgn: 1.0 - sympy: 1.12 - tarski: 0.8.2 - tensorboard: 2.16.2 - tensorboard-data-server: 0.7.1 - tensorboardx: 2.6.1 - threadpoolctl: 3.1.0 - tomli: 2.0.1 - torch: 2.0.1 - torch-optimizer: 0.3.0 - torch-scatter: 2.1.1 - torchmetrics: 0.11.4 - tornado: 6.3.3 - tqdm: 4.65.0 - traitlets: 5.9.0 - triton: 2.0.0 - typing-extensions: 4.6.3 - tzdata: 2023.3 - urllib3: 1.26.16 - uvicorn: 0.23.0 - wcwidth: 0.2.6 - websocket-client: 1.6.1 - websockets: 11.0.3 - werkzeug: 2.3.6 - wheel: 0.40.0 - yarl: 1.9.2 - z3: 0.2.0 - zipp: 3.15.0 * System: - OS: Linux - architecture: - 64bit - ELF - processor: x86_64 - python: 3.9.16 - release: 5.4.0-174-generic - version: #193-Ubuntu SMP Thu Mar 7 14:29:28 UTC 2024

More info

No response

cc @carmocca @awaelchli

dreaming-huang commented 3 months ago

I have also encountered this problem.In my case, it was caused by the increase in dataset size. Pretrain: Each epoch consists of 100 iterations. Finetune: Each epoch consists of 120 iterations. After pretrain n epoch, fine-tuning commences at training_step epoch_n it_100. PL log 'xxx_epoch' between the invocation of callbacks. ModelCheckpoint and training_step epoch_n+1 it_0