conda create --name omhand python=3.10
conda activate omhand
pip install torch torchvision --index-url https://download.pytorch.org/whl/cu117
pip install -e .[all]
pip install -v -e third-party/ViTPose
We provide models and checkpoints that can deal with following tasks: Single Image Reconstruction, Video Reconstruction, Multiview Reconstruction.
Download our checkpoint Demo_Video.pth, Demo_Image.pth, Demo_Multiview.pth, Eval_Video.pth, and put them under ./checkpoints . The Demo checkpoints are for in-the-wild demo, and the Eval checkpoint is for dataset validation on Interhand2.6m.
And download mano files from MANO, put MANO_RIGHT.pkl and MANO_LEFT.pkl under _DATA/data/mano.
Set VIDEO_PATH as your video file path
python run_demo.py \
--checkpoint ./checkpoints/Demo_Video.pth \
--cfg ./checkpoints/config_video.yaml \
--video_dir VIDEO_PATH \
--out_dir ./demo_out \
--gpu 0 \
--mode video
Put all images in IMAGE_FOLDER , run:
python run_demo.py \
--checkpoint ./checkpoints/Demo_Image.pth \
--cfg ./checkpoints/config_image.yaml \
--image_dir IMAGE_FOLDER \
--out_dir ./demo_out \
--gpu 0 \
--mode image
Put multi-view images in IMAGE_FOLDER, run the following code
python run_demo.py \
--checkpoint ./checkpoints/Demo_Multiview.pth \
--cfg ./checkpoints/config_multi.yaml \
--image_dir IMAGE_FOLDER \
--out_dir ./demo_out \
--gpu 0 \
--mode multi