This is the official repository of the Retrieval Augmented Visual Question Answering (RAVQA) project. The project covers RAVQA and RAVQA-v2 (equipped with Fine-grained Late-interaction Multi-modal Retrieval).
FLMRModelForRetrieval.from_pretrained(...)
.legacy_v1
or tag v1.0
. We are also preparing a new FLMR implementation for Huggingface transformers, which will be released as plug-in-and-play models.🔥Model | WIT Recall@10 | IGLUE Recall@1 | KVQA Recall@5 | MSMARCO Recall@5 | OVEN Recall@5 | LLaVA Recall@1 | EVQA Recall@5 | EVQA Pseudo Recall@5 | OKVQA Recall@5 | OKVQA Pseudo Recall@5 | Infoseek Recall@5 | Infoseek Pseudo Recall@5 |
---|---|---|---|---|---|---|---|---|---|---|---|---|
LinWeizheDragon/PreFLMR_ViT-G🤗 | 0.619 | 0.718 | 0.419 | 0.783 | 0.643 | 0.726 | 0.625 | 0.721 | 0.302 | 0.674 | 0.392 | 0.577 |
LinWeizheDragon/PreFLMR_ViT-L🤗 | 0.605 | 0.699 | 0.440 | 0.779 | 0.608 | 0.729 | 0.609 | 0.708 | 0.314 | 0.690 | 0.374 | 0.578 |
LinWeizheDragon/PreFLMR_ViT-B🤗 | 0.427 | 0.574 | 0.294 | 0.786 | 0.468 | 0.673 | 0.550 | 0.663 | 0.272 | 0.658 | 0.260 | 0.496 |
Note: We converted the checkpoints from PyTorch to Huggingface-transformers, whose benchmark results differ from the numbers reported in the original paper slightly. You can reproduce the results in the above paper by referring to the instructions in this document.
The benchmark dataset corpus can be found here and the images can be found here
Using the provided codebase, it is expected to obtain the following results.
Model | Recall@5 | Notes |
---|---|---|
FLMR (9 ROIs) | 89.20 | |
FLMR (9 ROIs) | 89.28 | Using the pretrained ckpt |
Model | VQA Score | Notes |
---|---|---|
RA-VQA | 54.51 | In the previous paper |
RA-VQA-v2 | 61.86 | with FLMR |
Since we refactored the codebase significantly in clean-up, these numbers may not match exactly to what were reported in the paper.
We host the data required for running this system in Huggingface and Baidu Cloud (coming soon).
The data contains:
You can download these resources from Huggingface altogether: Combined Download on Huggingface.
wget https://huggingface.co/datasets/BByrneLab/RAVQAV2Data/resolve/main/RAVQA_v2_data.tar.gz?download=true
After downloading and extracting the tar.gz
, you need to unzip all .zip
files under okvqa
folder and okvqa/pre-extracted/OCR.zip
.
After otaining all these resources, you should:
configs/okvqa/okvqa_data_config.libsonnet
TokenizerModelVersion
in configs/okvqa/FLMR_with_ROI.jsonnet
EncoderModelVersion
and TokenizerModelVersion
in configs/okvqa/FLMR_base_preload_vision_features.jsonnet
By downloading the provided OK-VQA data, you must comply with the OK-VQA license and MS COCO license.
The framework was designed and implemented by Weizhe Lin, University of Cambridge. All rights are reserved. Use with research purposes is allowed. This framework is designed for research purpose, with flexibility for extension. It is not a perfect framework for production, of course.
The training and testing are backboned by pytorch-lightning. The pre-trained Transformer models are from Huggingface-transformers. The training platform is Pytorch.
In this release, we designed a new framework that wraps the data processing/training/testing utilities - Runway For ML. It is a highly efficient framework that enables flexible experimentation and data processing. Data processing is formulated as a Directional Acyclic Graph, on which the framework traverses through nodes to prepare data. This framework enables efficient data processing at million scale. For more details, please refer to the README of the framework.
When cloning this repository, please use the kbvqa_dev
branch.
The indexing and searching of FLMR is supported by FAISS and ColBERT. The ColBERT engine is plugged into this project as a third-party package. We fixed many errors in this package following LI-RAGE.
The framework consists of:
RunwayExperiment
instance to execute training and testing.data_pipeline
. The details of this feature can be found in here.collate_fn
is defined to collate the data. An decorator class ModuleParser
is used to help generate the training inputs. This decorator class generates input dict according to configs (config.model_config.input_modules/decorder_input_modules/output_modules
).LightningModule
instance. It defines training/testing behaviors (training steps, optimizers, schedulers, logging, checkpointing, and so on). It initialises the model being trained at self.model
.nn.Modules
models.The configuration is achieved with jsonnet
. It enables inheritance of config files. For example, configs/okvqa/FLMR_with_ROI.jsonnet
override its configs to configs/okvqa/FLMR_base_preload_vision_features.jsonnet
.
By including the corresponding key:value pair in the config file, overriding can be easily performed.
A decorator class that helps to parse data into features that are used by models.
An example is shown below:
"input_modules": {
"module_list":[
{"type": "QuestionInput", "option": "default",
"separation_tokens": {'start': '<BOQ>', 'end': '<EOQ>'}},
{"type": "TextBasedVisionInput", "option": "caption",
"separation_tokens": {'start': '<BOC>', 'end': '<EOC>'}},
{"type": "TextBasedVisionInput", "option": "object",
"object_max": 40, "attribute_max": 3, "attribute_thres":0.05, "ocr": 1,
"separation_tokens": {'start': '<BOV>', 'sep': '<SOV>', 'end': '<EOV>'}},
],
"postprocess_module_list": [
{"type": "PostProcessInputTokenization", "option": "default"},
],
},
"decoder_input_modules": {
"module_list":[],
"postprocess_module_list": [],
},
"output_modules": {
"module_list":[
{"type": "GenerationOutput", "option": "default"},
],
"postprocess_module_list": [
{"type": "PostProcessOutputTokenization", "option": "default"},
],
},
which first generates text_sequences:
<BOQ> Question <EOQ> <BOC> Caption <EOC> <BOV> obj1 attr1 attr2 <SOV> obj2 ... [OCR results] <EOV>
in the order defined in input_modules
, and then the postprocessing unit PostProcessInputTokenization
is used to tokenize the input into input_ids
and input_attention_masks
.
By defining new functions in ModuleParser
, e.g. self.TextBasedVisionInput
, a new behavior can be easily introduced to transform modules into training features.
The following entries in config file test.metrics
define the metrics to compute in validation and testing. Each module uploads log_dict
with metrics_name: metrics_value
which can be processed in trainers conveniently.
"metrics": [
{'name': 'compute_exact_match'},
{'name': 'compute_retrieval_metrics'},
{'name': 'compute_okvqa_scores'},
],
We use WANDB for logging in this framework. You will need to register a WANDB account, and change the WANDB config in meta_configs/hpc_meta_config.libsonnet
:
"WANDB": {
"CACHE_DIR": wandb_cache_dir,
"entity": "your account/project account",
"project": "your project",
"tags": ["FVQA"], // default tags
},
Some general cli arguments. For more details, please read the code / directly look at how they are used in training/evaluation of specific models.
--opts train.trainer_paras.accelerator=auto \
train.trainer_paras.devices=auto \
train.trainer_paras.strategy=ddp_find_unused_parameters_true \
train.trainer_paras.num_sanity_val_steps=2 \
train.trainer_paras.max_epochs=10000 \
train.trainer_paras.val_check_interval=1000 \
train.trainer_paras.accumulate_grad_batches=2 \
--experiment_name EXPERIMENT_NAME
the name of the experiment. Will be used as the name of the folder as well as the run name on WANDB--mode [prepare_data/train/test]
indicate the mode for running. prepare_data only runs the data preprocessing pipeline.--modules module1 module2 module3 ...
list of modules that will be used. They will be saved to self.config.model_config.modules
so that they are accessible anywhere in the framework.--log_prediction_tables
: logs validation/test model outputs to WANDB.--tags tag_a tag_b tag_c
: adds tags to the WANDB run.--opts [list of configurations]
used at the end of the cli command. self.config
will be overwritten by the configurations here. For example:
train.batch_size=30
batch sizetrain.optimizer_config.scheduler=linear
currently supports none/lineartrain.trainer_paras.max_epochs=10000
train.optimizer_config.optimizer_params.lr=0.00001
learning ratetrain.trainer_paras.accumulate_grad_batches=2
train.optimizer_config.scheduler_params.num_warmup_steps=0
train.early_stopping_callback_paras.patience=10
train.model_checkpoint_callback_paras.save_top_k=1
how many best checkpoints are savedvalid.batch_size=4
train.trainer_paras.val_check_interval=1000
how many steps between validation--test_suffix XXX
this will creates a folder under the experiment folder (indicated by --experiment_name
) and save everything there. Also, in the WANDB run (run name indicated by --experiment_name
), a new section with this name (XXX
) will be created, and the evaluation scores will be logged into this section.--opts test.batch_size=16
--opts test.load_epoch=6
which checkpoint to load. Note that you need to have the same experiment nameCreate virtualenv:
conda create -n RAVQA python=3.8
conda activate RAVQA
Install Pytorch:
pip install torch==1.12.1+cu113 torchvision==0.13.1+cu113 torchaudio==0.12.1 --extra-index-url https://download.pytorch.org/whl/cu113
Install other libraries:
pip install transformers==4.28.1
conda install -c pytorch faiss-gpu -y
pip install setuptools==59.5.0
pip install wandb pytorch-lightning==2.0.4 jsonnetbin easydict pandas scipy opencv-python fuzzywuzzy scikit-image matplotlib timm scikit-learn sentencepiece tensorboard datasets
pip install ujson evaluate GPUtil easydict peft==0.4.0
pip install bitarray spacy ujson gitpython ninja absl-py openai sacrebleu
cd third_party/ColBERT
pip install -e .
To speed up training and inference, this codebase supports pre-computing image features (including ROI features). These features can be overwhelming if saved to the local disk as individual files. Thus, we install ElasticSearch to index all images and their extracted features.
Download ElasticSearch and unzip
Run ElasticSearch at a separate thread and keep it running in the background:
./bin/elasticsearch
In the first launch, note down the password
Before running data processing scripts, set the environment variables:
export ELASTIC_CA_CERTS="/path/to/elasticsearch-8.7.0/config/certs/http_ca.crt"
export ELASTIC_PASSWORD="YOUR PASSWORD"
Note that we provide a zip file containing all data here: Resources
data/ok-vqa/train2014
: Train images
data/ok-vqa/val2014
: Test images
data/ok-vqa/mscoco_train2014_annotations.json
: Training annotations
data/ok-vqa/mscoco_val2014_annotations.json
: Testing annotations
data/ok-vqa/OpenEnded_mscoco_train2014_questions.json
: Training questions
data/ok-vqa/OpenEnded_mscoco_val2014_questions.json
: Testing questions
Data can be saved to data/ok-vqa/pre-extracted_features/passages/okvqa_full_corpus.csv
.
We provide the pre-extracted features for OK-VQA dataset. If you want to re-extract the features or extract features for other datasets, please follow the instructions below.
VinVL needs a separate env.
Refer to Offical installation guide
Since HPC uses A-100, which requires a higher version of CUDA, the recommended environment with CUDA 10.1 does not work.
conda create --name sg_benchmark python=3.7 -y
conda activate sg_benchmark
pip install torch==1.7.1+cu110 torchvision==0.8.2+cu110 torchaudio==0.7.2 -f https://download.pytorch.org/whl/torch_stable.html
conda install ipython h5py nltk joblib jupyter pandas scipy -y
pip install ninja yacs>=0.1.8 cython matplotlib tqdm opencv-python numpy>=1.19.5
python -m pip install cityscapesscripts
pip install pycocotools scikit-image timm einops
cd materials/scene_graph_benchmark
python setup.py build develop
cd materials/scene_graph_benchmark
python tools/prepare_data_for_okvqa.py
This command generates trainset/testset of OKVQA datasets to datasets/okvqa/
, which will be used in object detection.
mkdir models
mkdir models/vinvl
/path/to/azcopy copy https://penzhanwu2.blob.core.windows.net/sgg/sgg_benchmark/vinvl_model_zoo/vinvl_vg_x152c4.pth ./models/vinvl/
vinvl_vg_x152c4
is a pre-trained model with object and attribute detection:
For OKVQA dataset:
python tools/test_sg_net.py \
--config-file sgg_configs/vgattr/vinvl_x152c4_okvqa_testset.yaml \
TEST.IMS_PER_BATCH 8 \
MODEL.WEIGHT models/vinvl/vinvl_vg_x152c4.pth \
MODEL.ROI_HEADS.NMS_FILTER 1 \
MODEL.ROI_HEADS.SCORE_THRESH 0.2 \
DATA_DIR "./datasets/" \
TEST.IGNORE_BOX_REGRESSION True \
MODEL.ATTRIBUTE_ON True \
TEST.OUTPUT_FEATURE True
python tools/test_sg_net.py \
--config-file sgg_configs/vgattr/vinvl_x152c4_okvqa_trainset.yaml \
TEST.IMS_PER_BATCH 8 \
MODEL.WEIGHT models/vinvl/vinvl_vg_x152c4.pth \
MODEL.ROI_HEADS.NMS_FILTER 1 \
MODEL.ROI_HEADS.SCORE_THRESH 0.2 \
DATA_DIR "./datasets/" \
TEST.IGNORE_BOX_REGRESSION True \
MODEL.ATTRIBUTE_ON True \
TEST.OUTPUT_FEATURE True
vinvl_large
is a pre-trained model with only object detection. But it was pre-trained on more object detection datasets!
python tools/test_sg_net.py \
--config-file sgg_configs/vgattr/vinvl_large_okvqa_testset.yaml \
TEST.IMS_PER_BATCH 8 \
MODEL.WEIGHT models/vinvl/vinvl_large.pth \
MODEL.ROI_HEADS.NMS_FILTER 1 \
MODEL.ROI_HEADS.SCORE_THRESH 0.2 \
DATA_DIR "./datasets/" \
TEST.IGNORE_BOX_REGRESSION True \
MODEL.ATTRIBUTE_ON True \
TEST.OUTPUT_FEATURE True
python tools/test_sg_net.py \
--config-file sgg_configs/vgattr/vinvl_large_okvqa_trainset.yaml \
TEST.IMS_PER_BATCH 8 \
MODEL.WEIGHT models/vinvl/vinvl_large.pth \
MODEL.ROI_HEADS.NMS_FILTER 1 \
MODEL.ROI_HEADS.SCORE_THRESH 0.2 \
DATA_DIR "./datasets/" \
TEST.IGNORE_BOX_REGRESSION True \
MODEL.ATTRIBUTE_ON True \
TEST.OUTPUT_FEATURE True
The object/attribute data can be saved to data/ok-vqa/pre-extracted_features/vinvl_output/vinvl_okvqa_trainset_full/inference/vinvl_vg_x152c4/predictions.tsv
.
We can download COCO-caption data with azcopy:
cd materials/Oscar
path/to/azcopy copy 'https://biglmdiag.blob.core.windows.net/vinvl/datasets/coco_caption' ./oscar_dataset --recursive
Reference: offical download page
We can download COCO captioning large here, or refer to the official download page for the model checkpoints.
Save the pre-trained model to pretrained_models/coco_captioning_large_scst
.
python oscar/run_captioning.py \
--do_test \
--do_eval \
--test_yaml oscar_dataset/coco_caption/[train/val/test].yaml \
--per_gpu_eval_batch_size 64 \
--num_beams 5 \
--max_gen_length 20 \
--output_prediction_path './output/[train/val/test]_predictions.json' \
--eval_model_dir pretrained_models/coco_captioning_large_scst/checkpoint-4-50000
Note that in the script, transformer
is renamed to transformer2
such that it won't conflict with existing transformer
package in your environment.
The data can be saved to data\ok-vqa\pre-extracted_features\captions\train_predictions.json
.
First, enable Google OCR APIs; download the key file to google_ocr_key.json
. This is not free! Ask me for the already generated features.
cd src
python ocr.py
The detected features will be saved to data/ok-vqa/pre-extracted_features/OCR
.
IMPORTANT NOTE: In the following sections, first you need to run the provided scripts with --mode train
changed to --mode prepare_data
. This runs the data preprocessing and save the processing results to the cache folder. Then, you will be able to reuse these cache files in later runs. If you want to re-run some of the data nodes, open the data config file (e.g. configs/okvqa/okvqa_data_config.libsonnet
) and change regenerate=False
to True
, and then rerun the script with --mode prepare_data
. You will see that the nodes with regenerate=True
, along with their downstream nodes, are re-generated.
python src/main.py \
--experiment_name "FLMR_Pretraining(WIT)_MappingNetwork(32)" \
--config "configs/wit/FLMR_WIT_pretraining.jsonnet" \
--reset --override \
--mode train \
--opts train.trainer_paras.accelerator=auto \
train.trainer_paras.devices=auto \
train.trainer_paras.strategy=ddp_find_unused_parameters_true \
train.trainer_paras.num_sanity_val_steps=2 \
train.trainer_paras.max_epochs=10000 \
train.batch_size=30 \
train.trainer_paras.val_check_interval=1000 \
valid.batch_size=16 \
train.trainer_paras.accumulate_grad_batches=2 \
train.early_stopping_callback_paras.patience=10 \
train.optimizer_config.optimizer_params.lr=0.00001 \
train.optimizer_config.scheduler=none \
A pretrained checkpoint is provided earlier in this document. You don't have to run the pretraining on your own.
python src/main.py \
--experiment_name "OKVQA_FLMR_9ROI_with_text_based_vision_fix_lens" \
--config "configs/okvqa/FLMR_with_ROI.jsonnet" \
--reset --override \
--mode train \
--opts train.trainer_paras.accelerator=auto \
train.trainer_paras.devices=auto \
train.trainer_paras.strategy=ddp_find_unused_parameters_true \
train.trainer_paras.num_sanity_val_steps=2 \
train.trainer_paras.max_epochs=10000 \
train.batch_size=30 \
train.trainer_paras.val_check_interval=1000 \
valid.batch_size=16 \
train.trainer_paras.accumulate_grad_batches=2 \
train.early_stopping_callback_paras.patience=10 \
train.optimizer_config.optimizer_params.lr=0.00001 \
train.optimizer_config.scheduler=none \
model_config.num_ROIs=9 \
train.load_model_path="checkpoint_path" \
checkpoint_path
is the path to either the checkpoint saved during the pretraining in the previous step, or the pretrained checkpoint WIT_pretrained_ckpt.ckpt
.
python src/main.py \
--experiment_name "OKVQA_FLMR_9ROI_with_text_based_vision_generate_index" \
--config "configs/okvqa/FLMR_with_ROI.jsonnet" \
--reset --override \
--test_suffix generate_index \
--mode test \
--opts test.trainer_paras.accelerator=auto \
test.trainer_paras.devices=auto \
test.trainer_paras.strategy=ddp_find_unused_parameters_true \
test.batch_size=16 \
model_config.num_ROIs=10 \
train.load_model_path="checkpoitn_path" \
data_pipeline.transforms.input:LoadGoogleSearchAnnotations.setup_kwargs.use_all_samples=1 \
The static results are generated in the previous step:
"/path/to/experiments/OKVQA_FLMR_9ROI_with_text_based_vision_generate_index/test/generate_index/generate_index_test_OKVQADatasetForDPR.test_predictions_rank_0.json",
"/path/to/experiments/OKVQA_FLMR_9ROI_with_text_based_vision_generate_index/test/generate_index/generate_index_test_OKVQADatasetForDPR.train_predictions_rank_0.json",
Change the config file configs/rag/okvqa/RAG_BLIP2_with_FLMR.jsonnet
local index_files = {
"index_path": "",
"embedding_path": "",
"static_results": [
"/path/to/experiments/OKVQA_FLMR_9ROI_with_text_based_vision_generate_index/test/generate_index/generate_index_test_OKVQADatasetForDPR.test_predictions_rank_0.json",
"/path/to/experiments/OKVQA_FLMR_9ROI_with_text_based_vision_generate_index/test/generate_index/generate_index_test_OKVQADatasetForDPR.train_predictions_rank_0.json",
],
};
Note: this framework also supports retrieving passages dynamically. Due to time constraints, we are not able to provide a hit-to-run instruction for that feature. Users are encouraged to explore this feature if they are interested in using RAVQA-v2 with joint training (similar to RAVQA-v1).
Now you can run training as follows:
python src/main.py \
--experiment_name "OKVQA_RAG_BLIP2(t5-xl)_FLMR(10ROI)" \
--config "configs/rag/okvqa/RAG_BLIP2_with_FLMR.jsonnet" \
--modules static_retrieval force_existence \
--reset --override \
--mode train \
--opts train.trainer_paras.accelerator=auto \
train.trainer_paras.devices=auto \
train.trainer_paras.strategy=ddp_find_unused_parameters_true \
train.trainer_paras.num_sanity_val_steps=2 \
train.trainer_paras.max_epochs=9999999 \
train.trainer_paras.precision="bf16" \
train.batch_size=1 \
train.trainer_paras.val_check_interval=500 \
valid.batch_size=16 \
train.trainer_paras.accumulate_grad_batches=16 \
train.early_stopping_callback_paras.patience=5 \
train.optimizer_config.optimizer_params.lr=0.0001 \
train.optimizer_config.scheduler=none \
train.model_checkpoint_callback_paras.save_top_k=1 \
model_config.num_beams=2 \
model_config.num_knowledge_passages=5 \
model_config.num_knowledge_passages_in_training=5 \
If you encounter GPU OOM errors, try reducing num_knowledge_passages_in_training
to reduce the passages used in each forward pass. If num_knowledge_passages_in_training < num_knowledge_passages (K)
, random passages will be drawn from top-K retrieved documents.
third_party/ColBERT/colbert/search/index_storage.py: Line 67
.If our work (including the software provided) helped your research, please kindly cite our paper at NeurIPS 2023 and EMNLP 2022:
@inproceedings{lin-etal-2024-preflmr,
title = "{P}re{FLMR}: Scaling Up Fine-Grained Late-Interaction Multi-modal Retrievers",
author = "Lin, Weizhe and
Mei, Jingbiao and
Chen, Jinghong and
Byrne, Bill",
editor = "Ku, Lun-Wei and
Martins, Andre and
Srikumar, Vivek",
booktitle = "Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)",
month = aug,
year = "2024",
address = "Bangkok, Thailand",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2024.acl-long.289",
pages = "5294--5316",
abstract = "Large Multimodal Models (LMMs) excel in natural language and visual understanding but are challenged by exacting tasks such as Knowledge-based Visual Question Answering (KB-VQA) which involve the retrieval of relevant information from document collections to use in shaping answers to questions. We present an extensive training and evaluation framework, M2KR, for KB-VQA. M2KR contains a collection of vision and language tasks which we have incorporated into a single suite of benchmark tasks for training and evaluating general-purpose multi-modal retrievers. We use M2KR to develop PreFLMR, a pre-trained version of the recently developed Fine-grained Late-interaction Multi-modal Retriever (FLMR) approach to KB-VQA, and we report new state-of-the-art results across a range of tasks. We also present investigations into the scaling behaviors of PreFLMR intended to be useful in future developments in general-purpose multi-modal retrievers.",
}
@inproceedings{
lin2023finegrained,
title={Fine-grained Late-interaction Multi-modal Retrieval for Retrieval Augmented Visual Question Answering},
author={Weizhe Lin and Jinghong Chen and Jingbiao Mei and Alexandru Coca and Bill Byrne},
booktitle={Thirty-seventh Conference on Neural Information Processing Systems},
year={2023},
url={https://openreview.net/forum?id=IWWWulAX7g}
}
@inproceedings{lin-etal-2023-fvqa,
title = "{FVQA} 2.0: Introducing Adversarial Samples into Fact-based Visual Question Answering",
author = "Lin, Weizhe and
Wang, Zhilin and
Byrne, Bill",
booktitle = "Findings of the Association for Computational Linguistics: EACL 2023",
month = may,
year = "2023",
address = "Dubrovnik, Croatia",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2023.findings-eacl.11",
pages = "149--157",
abstract = "The widely used Fact-based Visual Question Answering (FVQA) dataset contains visually-grounded questions that require information retrieval using common sense knowledge graphs to answer. It has been observed that the original dataset is highly imbalanced and concentrated on a small portion of its associated knowledge graph. We introduce FVQA 2.0 which contains adversarial variants of test questions to address this imbalance. We show that systems trained with the original FVQA train sets can be vulnerable to adversarial samples and we demonstrate an augmentation scheme to reduce this vulnerability without human annotations.",
}
@inproceedings{lin-byrne-2022-retrieval,
title = "Retrieval Augmented Visual Question Answering with Outside Knowledge",
author = "Lin, Weizhe and
Byrne, Bill",
editor = "Goldberg, Yoav and
Kozareva, Zornitsa and
Zhang, Yue",
booktitle = "Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing",
month = dec,
year = "2022",
address = "Abu Dhabi, United Arab Emirates",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2022.emnlp-main.772",
doi = "10.18653/v1/2022.emnlp-main.772",
pages = "11238--11254",
abstract = "Outside-Knowledge Visual Question Answering (OK-VQA) is a challenging VQA task that requires retrieval of external knowledge to answer questions about images. Recent OK-VQA systems use Dense Passage Retrieval (DPR) to retrieve documents from external knowledge bases, such as Wikipedia, but with DPR trained separately from answer generation, introducing a potential limit on the overall system performance. Instead, we propose a joint training scheme which includes differentiable DPR integrated with answer generation so that the system can be trained in an end-to-end fashion. Our experiments show that our scheme outperforms recent OK-VQA systems with strong DPR for retrieval. We also introduce new diagnostic metrics to analyze how retrieval and generation interact. The strong retrieval ability of our model significantly reduces the number of retrieved documents needed in training, yielding significant benefits in answer quality and computation required for training.",
}