Closed Sirius083 closed 5 years ago
That's werid. What is your tensorflow version? I need to check whether it is caused by wrong implemention or TF API change.
Thanks for you reply tensorflow:1.12 tensorpack:0.9.1 python: anaconda 3.6
One more question, did you train your model on cifar10 under tensorflow or pytorch? I trained the model of sparsenet_d_40_k_12(no bottleneck) on cifar10 the best validation error on test set is 7.19%
part of the logging
block3/densen_layer.9/bn1/beta:0 [48] 48
block3/densen_layer.9/conv1/W:0 [3, 3, 48, 12] 5184
block3/densen_layer.10/bn1/gamma:0 [48] 48
block3/densen_layer.10/bn1/beta:0 [48] 48
block3/densen_layer.10/conv1/W:0 [3, 3, 48, 12] 5184
block3/densen_layer.11/bn1/gamma:0 [48] 48
block3/densen_layer.11/bn1/beta:0 [48] 48
block3/densen_layer.11/conv1/W:0 [3, 3, 48, 12] 5184
bn_last/gamma:0 [48] 48
bn_last/beta:0 [48] 48
linear/W:0 [48, 10] 480
linear/b:0 [10] 10
Total #vars=119, #params=185778, size=0.71MB
the log in pytorch implemented model denselink.py is same as that in tensorflow (change depth=40, nClass=19, bottleneck=False, fetch="exp")
(classifier): Sequential(
(avgpool): AvgPool2d(kernel_size=8, stride=8, padding=0)
(flattern): Flattern(dim=0)
(linear): Linear(in_features=48, out_features=10, bias=True)
)
)
+ Number of params: 0.18
torch.Size([12, 10]) tensor(-20.4898, grad_fn=<SumBackward0>)
Thanks for pointing out. Actually the entry should be sparsenet-40-24 (as listed in README). I will fix the wrong text and upload a new arxiv version.
In the paper, Table 2, the SparseNet_d_40_k_12 (no bottleneck) the total parameters of the model is 0.8M from the chart However I run your code (tensorflow) the log shows the total paramter count is 0.18M (I trained the model and generate the pb file to re-compute the total parameter, is still 0.18M) Do you know why there is inconsistency? Thanks in advance