Lyken17 / SparseNet

[ECCV 2018] Sparsely Aggreagated Convolutional Networks https://arxiv.org/abs/1801.05895
MIT License
125 stars 25 forks source link
computer-vision convolutional-neural-networks deep-learning

SparseNet

Sparsely Aggregated Convolutional Networks [PDF]

Ligeng Zhu, Ruizhi Deng, Michael Maire, Zhiwei Deng, Greg Mori, Ping Tan

What is SparseNet?

SparseNet is a network architecture that only aggregates previous layers with exponential offset, for example, i - 1, i - 2, i - 4, i - 8, i - 16 ...

Why use SparseNet?

The connectivity pattern yields state-of-the-art arruacies on small dataset CIFAR/10/100. On large scale ILSVRC 2012 (ImageNet) dataset, SparseNet achieves similar accuracy as ResNet and DenseNet, while only using much less parameters.

Better Performance

Without BC With BC
Architecture | Params | CIFAR 100 --- | --- | --- DenseNet-40-12 | 1.1M | 24.79 DenseNet-100-12 | 7.2M | 20.97 DenseNet-100-24 | 28.28M | 19.61 --- | --- | --- SparseNet-40-24 | 0.76M | 24.65 SparseNet-100-36 | 5.65M | 20.50 SparseNet-100-{16,32,64} | 7.22M | 19.49 Architecture | Params | CIFAR 100 --- | --- | --- DenseNet-100-12 | 0.8M | 22.62 DenseNet-250-24 | 15.3M | 17,6 DenseNet-190-40 | 25.6M | 17.53 --- | --- | --- SparseNet-100-24 | 1.46M | 22.12 SparseNet-100-{16,32,64} | 4.38M | 19.71 SparseNet-100-{32,64,128} | 16.72M | 17.71

Efficient Parameter Utilization

Pretrained model

Refer for source folder.

Cite

If SparseNet helps your research, please cite our work :)

@article{DBLP:journals/corr/abs-1801-05895,
  author    = {Ligeng Zhu and
               Ruizhi Deng and
               Michael Maire and
               Zhiwei Deng and
               Greg Mori and
               Ping Tan},
  title     = {Sparsely Aggregated Convolutional Networks},
  journal   = {CoRR},
  volume    = {abs/1801.05895},
  year      = {2018},
  url       = {http://arxiv.org/abs/1801.05895},
  archivePrefix = {arXiv},
  eprint    = {1801.05895},
  biburl    = {https://dblp.org/rec/bib/journals/corr/abs-1801-05895},
  bibsource = {dblp computer science bibliography, https://dblp.org}
}