Looking for Quadruped friends? Join "The Dog Pound animal control for Stray robot dogs" slack group:
https://join.slack.com/t/robotdogs/shared_invite/zt-24ep8mqn4-1p42Aq7owRv9klLI~3C5Pw
Looking for a Unitree Go1 Air, Pro, or MAX hack to enable EDU low-level functions? Look no further than Unitree Go1 Free-Dog SDK featuring 'faux-level' support! from Former "DJI Slack OG" @bin4ry
If you like this repo, fork it... Click to Fork https://github.com/MAVProxyUser/YushuTechUnitreeGo1! Make sure you keep your forked copy up to date, lots of changes happen over time. You won't want a stale copy.
宇树科技 HangZhou Yushu Technology (Unitree) go1 deep dive & unofficial development notes:
One of the first affordable affordable quadrupeds on the market is sold by Unitree Robotics. The marketing has exploded out of seemingly no where, and now the dogs are seemingly everywhere. Often confused as "Boston Dynamics Spot", or specifically being a "knock off Spot" the Go1 series is hard to miss these days. This likely started with the artificially low advertising cost. Beefed up marketing videos sold everyone on the low cost Air version of the dog, while hyping features of the EDU model.
"This $2,700 robot dog will carry a single bottle of water for you: Who needs a tote bag when you have a little robot butler?"
The reality is a "usable" version of the dog that can actually be programmed can never be obtained for $2700. This cost is reserved alone for the basic "RC" version of the dog, a version with no extra internal computing capability. Never mind the import costs, or artificial $1000 support overhead costs tacked on by most distributors at the request of Unitree.
The Unitree go1 dog is in essence an evolution of MIT Cheetah SPIne architecture. https://dspace.mit.edu/bitstream/handle/1721.1/118671/1057343368-MIT.pdf
In the Unitree design a Raspberry Pi & multiple Jetson boards take places of the Intel "UP" board in the Cheetah design. The RS485 network and STM32 motion processing is nearly identical. You can in fact easily find reminants of the Cheetah code in the Legged_sport binary from Unitree.
Note: The two small pins next to the XT30U connector on the dog's belly appear to be P & N signals for the RS485 "motors" network on the "A4".
The connector is properly called a XT30(2 2)-F and can be purchased here: https://www.aliexpress.com/item/3256801621419825.html
The back of the dog has a "40-pin Centronics connector" expansion connector that can be used to access various ports connected to the hardware on the dogs innards.
You can get variants of the connector fairly easily. There are a number of pin arrangements and minor variations. One example is listed below.
PART: FX2CA2-40P-1.27DSAL(71)-ND
DESC: CONN HEADER VERT 40POS 1.27MM
MFG : Hirose Electric Co Ltd [CI] / FX2CA2-40P-1.27DSAL(71)
https://www.hirose.com/product/document?clcode=CL0572-2768-1-71&productname=FX2-100P-0.635SH(71)&series=FX2&documenttype=Catalog&lang=en&documentid=D49368_en
https://www.digikey.com/short/195n09w7
More detail is located here: https://github.com/MAVProxyUser/YushuTechUnitreeGo1/tree/main/AfterSalesSupport/Expansion
Unitree advertises the "SSS Super-Sensing System" as follows, "1 set of fisheye binocular depth sensing angle = 150x170", "5 sets of fisheye binocular depth sensing" + "fisheye AI sensing", "1 set of fisheye binocular depth sensing = 4 sets of Intel Realsense sensing angle", "Thus: 5 sets of fisheye binocular depth sensing = 20 groups of Intel Realsense sensing angles".
Strings in the camera binary help us identify the vision hardware
unitree@unitree-desktop:~/Unitree/autostart/camerarosnode/cameraRosNode$ grep 2610 . -r
Binary file ./src/unitree_camera/lib/amd64/libtstc_V4L2_xu_camera.a matches
Binary file ./src/unitree_camera/lib/arm64/libtstc_V4L2_xu_camera.a matches
Binary file ./devel/lib/unitree_camera/point_cloud_node matches
Binary file ./devel/lib/unitree_camera/example_point matches
SPCA_2610 must be the camera name.
source//Extension_Unit_Class/Extension_Unit_SPCA2650_Protocol.cpp
This is clearly a SunPlus based "SSS" system. https://www.synopsys.com/dw/doc.php/ss/SunPlusIT_usb3.0-phy-controller.pdf https://www.sunplusit.com/EN/Product/PcCamera
Each Jetson Nano includes the following USB devices, in some cases multiple per.
Bus 001 Device 002: ID 1bcf:2cd1 Sunplus Innovation Technology Inc.
The linux hardware database lists the camera package here: https://linux-hardware.org/index.php?id=usb:1bcf-2cd1 "Sunplus Innovation Technology USB2.0 Camera"
Upon contacting SunTrust, they did confirm they make the camera's for Unitree, but refused any outside support such as providing a PDF manual for the chipset.
Recent versions of the Go1 firmware, specifically Go1_2022_05_11_e0d0e617.zip and up include "Blockly Programming". This can be used to send a limited set of commands to the Go1. Additionally it has a security vulnerability that allows arbitrary code execution via python on the dog.
In Go1_2022_05_11_e0d0e617/raspi/Unitree/autostart/programming we find programming.py
It imports ./build/robot_interface_high_level.cpython-37m-aarch64-linux-gnu.so in order to call the UDP listen functions.
import robot_interface_high_level as robot_interface
...
unitree_go1 = robot_interface.RobotInterface()
The interface seems to blindly pass user input to exec().
The exec() method executes the dynamically created program, which is either a string or a code object.
First the code passes through compile()
compile() method is used if the Python code is in string form or is an AST object, and you want to change it to a code object.
This handles all the MIT Scratch code blocks from the mobile client.
An example exploit is here: https://github.com/MAVProxyUser/YushuTechUnitreeGo1/blob/main/mqtt_python.py
The firmware update interface similarly contains a vulnerability that can allow for arbitrary code execution on the dog via python.
In Go1_2021_12_10_d799e0c3/raspi/Unitree/autostart/updateDependencies we find startup_manager.py
It declares itself to be "Unitree System Manager", and offers the following functions
Functions:
1. run bash files
2. delete uploaded packages
3. run update packages
4. process topics when modules shut down
This can also be used to run arbitry commands.
def on_message(client, userdata, msg):
global updatePackage
global updateFirmware
# not doing anything during update
if(updatePackage !='' or updateFirmware !=''):
return
# run bash file
if(msg.topic == "usys/sh"):
bashFile = str(msg.payload,'utf-8')
print("Running sh " + bashFile)
process = subprocess.Popen(["sh", bashFile],stdout=subprocess.PIPE)
An example exploit is here: https://github.com/MAVProxyUser/YushuTechUnitreeGo1/blob/main/mqtt_shellout.py
The upload interface can be used to push files to any location on the dog's file system as well, this can aid in abuse of the previously mentioned vulnerabilities. Generally speaking this isn't a huge deal, but over time Unitree will of course attempt to further lock down access to the dogs internals.
In Go1_2021_12_10_d799e0c3/raspi/Unitree/autostart/updateDependencies we find startup_uploader.py
It outlines how to accept update packages. They must be .zip files, or they will be rejected
$ cat test.txt
------------------------------4ebf00fbcf09
Content-Disposition: form-data; name="file"; filename="/tmp/out.zip"
filecontent here
------------------------------4ebf00fbcf09
$ curl -X POST -H "Content-Type: multipart/form-data; boundary=----------------------------4ebf00fbcf09" --data-binary @test.txt http://localhost:9800
{'info':'File '/tmp/out.zip' upload success!'}
An example exploit is here: https://github.com/MAVProxyUser/YushuTechUnitreeGo1/blob/main/mqtt_shellout.py
All the magic can be found here: https://github.com/unitreerobotics/unitree_legged_sdk/issues/24
Thanks to Devemin: https://qiita.com/devemin/items/1708176248a1928f3b88
Do not use one of these versions of the SDK, because they do NOT support go1: https://github.com/unitreerobotics/unitree_legged_sdk/releases/tag/v3.2 https://github.com/unitreerobotics/unitree_legged_sdk/releases/tag/v3.3 https://github.com/unitreerobotics/unitree_legged_sdk/releases/tag/v3.3.1 https://github.com/unitreerobotics/unitree_legged_sdk/releases/tag/v3.3.2 https://github.com/unitreerobotics/unitree_legged_sdk/releases/tag/3.3.3 https://github.com/unitreerobotics/unitree_legged_sdk/releases/tag/3.3.4 https://github.com/unitreerobotics/unitree_legged_sdk/releases/tag/v3.8.1 https://github.com/unitreerobotics/unitree_legged_sdk/releases/tag/v3.8.2 https://github.com/unitreerobotics/unitree_legged_sdk/releases/tag/v3.8.3 https://github.com/unitreerobotics/unitree_legged_sdk/releases/tag/v3.8.4
Support for go1 is only found in these versions: https://github.com/unitreerobotics/unitree_legged_sdk/releases/tag/3.4.2
- Legged_sport >= v1.32
https://github.com/unitreerobotics/unitree_legged_sdk/releases/tag/v3.5.0
- Legged_sport >= v1.36.0
- firmware H0.1.7 >= v0.1.35
H0.1.9 >= v0.1.35
https://github.com/unitreerobotics/unitree_legged_sdk/releases/tag/v3.5.1
- Legged_sport >= v1.36.0
- firmware H0.1.7 >= v0.1.35
H0.1.9 >= v0.1.35
https://github.com/unitreerobotics/unitree_legged_sdk/releases/tag/v3.8.0
- Legged_sport >= v1.36.0
- firmware H0.1.7 >= v0.1.35
H0.1.9 >= v0.1.35
g++ >= v8.3.0
python 3.7.x
3.8.x
You MUST patch the example_walk.cpp to work with High Level if you have an (Air?) Pro, or MAX (non EDU version) A patched version is here: example_walk_g01_high_level.cpp Likewise a precompiled binary is here: example_walk_g01_high_level
You need to use make changes to use the proper driver. In many cases the A1 driver is selected in the git commits, and the wrong UDP target is chosen.
safe(LeggedType::Go1)
and
192.168.123.161
Make sure it is not set to
safe(LeggedType::A1)
or
192.168.123.11
Likewise there are some typos that cause problems in v3.51. There is a prepatched Alternative typo fixed fork for go1 v3.5.1 here: https://github.com/JonasFovea/unitree_legged_sdk/tree/fix
You must also force the levelFlag to 0 for high level.
As outlined above, make the following changes.
user@dev0:~$ git clone https://github.com/unitreerobotics/unitree_legged_sdk.git -b v3.8.0
user@dev0:~$ cd unitree_legged_sdk/
user@dev0:~/unitree_legged_sdk$ cd build/
user@dev0:~/unitree_legged_sdk/build$ cmake ..
user@dev0:~/unitree_legged_sdk/build$ make
user@dev0:~/unitree_legged_sdk/build$ git diff
user@dev0:~/unitree_legged_sdk/build$ git diff
diff --git a/example/example_walk.cpp b/example/example_walk.cpp
index 46e20d4..07ceb22 100644
--- a/example/example_walk.cpp
+++ b/example/example_walk.cpp
@@ -15,7 +15,7 @@ class Custom
public:
Custom(uint8_t level):
safe(LeggedType::Go1),
- udp(level, 8090, "192.168.123.161", 8082){
+ udp(level, 8090, "192.168.12.1", 8082){
udp.InitCmdData(cmd);
}
void UDPRecv();
@@ -59,6 +59,7 @@ void Custom::RobotControl()
cmd.velocity[1] = 0.0f;
cmd.yawSpeed = 0.0f;
cmd.reserve = 0;
+ cmd.levelFlag = 0;
if(motiontime > 0 && motiontime < 1000){
cmd.mode = 1;
Ensure you are compiling the SDK for the proper arch! Don't compile for arm64 if you are on amd64!
user@dev0:~/unitree_legged_sdk_v3.5.1/build$ git diff
diff --git a/CMakeLists.txt b/CMakeLists.txt
index 7830771..66159c6 100644
--- a/CMakeLists.txt
+++ b/CMakeLists.txt
@@ -7,7 +7,7 @@ link_directories(lib)
add_compile_options(-std=c++11)
-set(EXTRA_LIBS -pthread libunitree_legged_sdk_arm64.so lcm)
+set(EXTRA_LIBS -pthread libunitree_legged_sdk_amd64.so lcm)
set(CMAKE_CXX_FLAGS "-O3 -fPIC")
For the ros_to_real package on ROS2 you can use the following notes:
source /opt/ros/galactic/setup.bash
mkdir -p ~/unitree_ros2_ws/src
cd ~/unitree_ros2_ws/src
git clone https://github.com/JonasFovea/unitree_legged_sdk.git -b fix
git clone https://github.com/unitreerobotics/unitree_ros2_to_real.git
diff --git a/CMakeLists.txt b/CMakeLists.txt
index 2cdf49f..a3ce520 100644
--- a/CMakeLists.txt
+++ b/CMakeLists.txt
@@ -22,13 +22,13 @@ set(CMAKE_CXX_FLAGS "-O3")
include_directories(
include
- ${CMAKE_SOURCE_DIR}/unitree_legged_sdk-master/include
+ /home/kfinisterre/unitree_ros2_ws/src/unitree_legged_sdk/include/
)
-link_directories(${CMAKE_SOURCE_DIR}/unitree_legged_sdk-master/lib)
-
+link_directories(/home/kfinisterre/unitree_ros2_ws/src/unitree_legged_sdk/lib)
diff --git a/src/ros2_udp.cpp b/src/ros2_udp.cpp
index 72dc295..e10dc96 100644
--- a/src/ros2_udp.cpp
+++ b/src/ros2_udp.cpp
@@ -22,7 +22,7 @@ public:
public:
Custom()
: low_udp(LOWLEVEL),
- high_udp(8090, "192.168.123.161", 8082, sizeof(HighCmd), sizeof(HighState))
+ high_udp(8090, "192.168.12.1", 8082, sizeof(HighCmd), sizeof(HighState))
{
high_udp.InitCmdData(high_cmd);
low_udp.InitCmdData(low_cmd);
@@ -116,4 +116,4 @@ int main(int argc, char **argv)
rclcpp::shutdown();
return 0;
-}
\ No newline at end of file
+}
diff --git a/src/ros2_walk_example.cpp b/src/ros2_walk_example.cpp
index 8cbae21..c225f89 100644
--- a/src/ros2_walk_example.cpp
+++ b/src/ros2_walk_example.cpp
@@ -37,7 +37,7 @@ int main(int argc, char **argv)
high_cmd_ros.head[0] = 0xFE;
high_cmd_ros.head[1] = 0xEF;
- high_cmd_ros.level_flag = HIGHLEVEL;
+ high_cmd_ros.level_flag = 0;
high_cmd_ros.mode = 0;
high_cmd_ros.gait_type = 0;
high_cmd_ros.speed_level = 0;
@@ -143,4 +143,4 @@ int main(int argc, char **argv)
}
return 0;
-}
\ No newline at end of file
+}
The ROS1 examples, including keyboard control can be made to work with the following diffs. (including on non EDU models)
diff --git a/unitree_legged_real/CMakeLists.txt b/unitree_legged_real/CMakeLists.txt
index e01901f..4d78ce0 100755
--- a/unitree_legged_real/CMakeLists.txt
+++ b/unitree_legged_real/CMakeLists.txt
@@ -30,6 +30,7 @@ include_directories(
include
${catkin_INCLUDE_DIRS}
${CMAKE_SOURCE_DIR}/unitree_legged_sdk/include
+ ~/unitree_ros_ws/src/unitree_legged_sdk/include/
)
diff --git a/unitree_legged_real/include/convert.h b/unitree_legged_real/include/convert.h
index f71a838..e4dfb66 100755
--- a/unitree_legged_real/include/convert.h
+++ b/unitree_legged_real/include/convert.h
@@ -63,7 +63,7 @@ UNITREE_LEGGED_SDK::HighCmd rosMsg2Cmd(const unitree_legged_msgs::HighCmd::Const
cmd.wirelessRemote[i] = msg->wirelessRemote[i];
}
- cmd.levelFlag = msg->levelFlag;
+ cmd.levelFlag = 0;
cmd.frameReserve = msg->frameReserve;
cmd.bandWidth = msg->bandWidth;
cmd.mode = msg->mode;
diff --git a/unitree_legged_real/src/exe/control_via_keyboard.cpp b/unitree_legged_real/src/exe/control_via_keyboard.cpp
index 53fda22..4b019ad 100644
--- a/unitree_legged_real/src/exe/control_via_keyboard.cpp
+++ b/unitree_legged_real/src/exe/control_via_keyboard.cpp
@@ -2,32 +2,24 @@
#include <geometry_msgs/Twist.h>
#include <termios.h>
-int getch()
-{
- int ch;
- struct termios oldt;
- struct termios newt;
-
- // Store old settings, and copy to new settings
- tcgetattr(STDIN_FILENO, &oldt);
- newt = oldt;
-
- // Make required changes and apply the settings
- newt.c_lflag &= ~(ICANON | ECHO);
- newt.c_iflag |= IGNBRK;
- newt.c_iflag &= ~(INLCR | ICRNL | IXON | IXOFF);
- newt.c_lflag &= ~(ICANON | ECHO | ECHOK | ECHOE | ECHONL | ISIG | IEXTEN);
- newt.c_cc[VMIN] = 0;
- newt.c_cc[VTIME] = 1;
- tcsetattr(fileno(stdin), TCSANOW, &newt);
-
- // Get the current character
- ch = getchar();
-
- // Reapply old settings
- tcsetattr(STDIN_FILENO, TCSANOW, &oldt);
-
- return ch;
+char getch() {
+ char buf = 0;
+ struct termios old = {0};
+ if (tcgetattr(0, &old) < 0)
+ perror("tcsetattr()");
+ old.c_lflag &= ~ICANON;
+ old.c_lflag &= ~ECHO;
+ old.c_cc[VMIN] = 1;
+ old.c_cc[VTIME] = 0;
+ if (tcsetattr(0, TCSANOW, &old) < 0)
+ perror("tcsetattr ICANON");
+ if (read(0, &buf, 1) < 0)
+ perror ("read()");
+ old.c_lflag |= ICANON;
+ old.c_lflag |= ECHO;
+ if (tcsetattr(0, TCSADRAIN, &old) < 0)
+ perror ("tcsetattr ~ICANON");
+ return (buf);
}
int main(int argc, char **argv)
diff --git a/unitree_legged_real/src/exe/example_walk.cpp b/unitree_legged_real/src/exe/example_walk.cpp
index ce46ddb..3ae0e51 100644
--- a/unitree_legged_real/src/exe/example_walk.cpp
+++ b/unitree_legged_real/src/exe/example_walk.cpp
@@ -32,7 +32,7 @@ int main(int argc, char **argv)
high_cmd_ros.head[0] = 0xFE;
high_cmd_ros.head[1] = 0xEF;
- high_cmd_ros.levelFlag = HIGHLEVEL;
+ high_cmd_ros.levelFlag = 0;
high_cmd_ros.mode = 0;
high_cmd_ros.gaitType = 0;
high_cmd_ros.speedLevel = 0;
@@ -137,4 +137,4 @@ int main(int argc, char **argv)
}
return 0;
-}
\ No newline at end of file
+}
diff --git a/unitree_legged_real/src/exe/ros_udp.cpp b/unitree_legged_real/src/exe/ros_udp.cpp
index 1a3daa9..eee0416 100644
--- a/unitree_legged_real/src/exe/ros_udp.cpp
+++ b/unitree_legged_real/src/exe/ros_udp.cpp
@@ -25,7 +25,7 @@ public:
public:
Custom()
: low_udp(LOWLEVEL),
- high_udp(8090, "192.168.123.161", 8082, sizeof(HighCmd), sizeof(HighState))
+ high_udp(8090, "192.168.12.1", 8082, sizeof(HighCmd), sizeof(HighState))
{
high_udp.InitCmdData(high_cmd);
low_udp.InitCmdData(low_cmd);
diff --git a/unitree_legged_real/src/exe/twist_sub.cpp b/unitree_legged_real/src/exe/twist_sub.cpp
index 10c2689..ab04169 100644
--- a/unitree_legged_real/src/exe/twist_sub.cpp
+++ b/unitree_legged_real/src/exe/twist_sub.cpp
@@ -25,7 +25,7 @@ public:
public:
Custom()
: low_udp(LOWLEVEL),
- high_udp(8090, "192.168.123.161", 8082, sizeof(HighCmd), sizeof(HighState))
+ high_udp(8090, "192.168.12.1", 8082, sizeof(HighCmd), sizeof(HighState))
{
high_udp.InitCmdData(high_cmd);
low_udp.InitCmdData(low_cmd);
@@ -78,7 +78,6 @@ void cmdVelCallback(const geometry_msgs::Twist::ConstPtr &msg)
printf("cmd_x_vel = %f\n", custom.high_cmd.velocity[0]);
printf("cmd_y_vel = %f\n", custom.high_cmd.velocity[1]);
printf("cmd_yaw_vel = %f\n", custom.high_cmd.yawSpeed);
-
unitree_legged_msgs::HighState high_state_ros;
high_state_ros = state2rosMsg(custom.high_state);
@@ -107,4 +106,4 @@ int main(int argc, char **argv)
ros::spin();
return 0;
-}
\ No newline at end of file
+}
There are several linux systems on the dogs network that act as ROS processing nodes. Currently there is no access to the STM32 MCU (aka 'h7') motion controller.
raspberrypi
192.168.123.161
192.168.12.1
pi / 123
root / 123
nano2gb
192.168.123.13
unitree / 123
root / (disabled)
unitree-desktop
192.168.123.14
192.168.123.15
unitree / 123
root / (disabled)
After connecting into the devices, and setting a root password, and adjusting the ssh config to allow root acecss, you can back up the systems to a USB drive connected to the RasPI port on the dogs back.
Ssh into the raspi, dump it to external USB
root@raspberrypi:/media/pi/59f46a9c-a6fc-45d6-824e-55f5c3844716/go1/raspberrypi# dd if=/dev/mmcblk0 of=mmcblk0 bs=4096
^C521+0 records in
521+0 records out
2134016 bytes (2.1 MB, 2.0 MiB) copied, 0.0781444 s, 27.3 MB/s
Ssh to each of the "desktop" nanos and dump them
root@unitree-desktop:/home/unitree# dd if=/dev/mmcblk0 bs=4096 | gzip -c | ssh pi@192.168.123.161 'cat > /media/pi/59f46a9c-a6fc-45d6-824e-55f5c3844716/go1/ubuntu-desktop_1/mmcblk0.gz'
pi@192.168.123.161's password:
root@unitree-desktop:/home/unitree# dd if=/dev/mmcblk0 bs=4096 | gzip -c | ssh pi@192.168.123.161 'cat > /media/pi/59f46a9c-a6fc-45d6-824e-55f5c3844716/go1/ubuntu-desktop_2/mmcblk0.gz'
pi@192.168.123.161's password:
Ssh to the nano2gb and dump it
root@nano2gb:/home/unitree# dd if=/dev/mmcblk0 bs=4096 | gzip -c | ssh pi@192.168.123.161 'cat > /media/pi/59f46a9c-a6fc-45d6-824e-55f5c3844716/go1/nano2gb/mmcblk0.gz'
pi@192.168.123.161's password:
On the dogs belly is a 24v pass though assumed to be 2A max. The power input on the dogs back can also be used for a payload when the dog is not on a bench.
To inspect network traffic on the dog, you will need to install tcpdump on one of the devices. The RasPi is an easy place to do this.
Download from the mirror
$ wget https://mirrors.tuna.tsinghua.edu.cn/debian/pool/main/t/tcpdump/tcpdump_4.9.3-1~deb10u2_arm64.deb
--2022-07-06 15:30:55-- https://mirrors.tuna.tsinghua.edu.cn/debian/pool/main/t/tcpdump/tcpdump_4.9.3-1~deb10u2_arm64.deb
Resolving mirrors.tuna.tsinghua.edu.cn (mirrors.tuna.tsinghua.edu.cn)... 101.6.15.130, 2402:f000:1:400::2
Connecting to mirrors.tuna.tsinghua.edu.cn (mirrors.tuna.tsinghua.edu.cn)|101.6.15.130|:443... connected.
HTTP request sent, awaiting response... 200 OK
Length: 378080 (369K) [application/octet-stream]
Saving to: ‘tcpdump_4.9.3-1~deb10u2_arm64.deb’
tcpdump_4.9.3-1~deb 100%[===================>] 369.22K 290KB/s in 1.3s
2022-07-06 15:31:00 (290 KB/s) - ‘tcpdump_4.9.3-1~deb10u2_arm64.deb’ saved [378080/378080]
Scp to the raspi, and install.
$ scp tcpdump_4.9.3-1~deb10u2_arm64.deb pi@192.168.123.161:/tmp/
pi@192.168.123.161's password:
tcpdump_4.9.3-1~deb10u2_arm64.deb 100% 369KB
Make yourself root and install the package.
root@raspberrypi:/home/pi$ dpkg -i /tmp/tcpdump_4.9.3-1~deb10u2_arm64.deb
Selecting previously unselected package tcpdump.
(Reading database ... 171570 files and directories currently installed.)
Preparing to unpack .../tcpdump_4.9.3-1~deb10u2_arm64.deb ...
Unpacking tcpdump (4.9.3-1~deb10u2) ...
Setting up tcpdump (4.9.3-1~deb10u2) ...
Processing triggers for man-db (2.8.5-2) ...
Install mosquitto-clients
pi@raspberrypi:~ $ sudo apt-get install mosquitto-clients
pi@raspberrypi:~ $ mosquitto_sub -v -t "#"
usys/run ok
usys/uuid xxx-xxx-xxx-xxx-xxx
usys/version/app 1.38.0
usys/version/nano3
updateDependencies:1.0.1;ipconfig:1.0.0;gencamparams:1.0.0;camerarosnode:1.0.0;03persontrack:2.1.0;imageai:1.0.2;faceLightServer:1.0.1;slamDetector:1.0.0;wsaudio:1.0.0;faceLightMqtt:1.0.0
usys/version/raspi
updateDependencies:1.0.1;roscore:1.0.0;configNetwork:1.0.0;sportMode:1.38.0;triggerSport:1.5.0;webMonitor:1.4.0;appTransit:1.5.0;07obstacle:1.1.0;utrack:3.9.4;programming:1.0.0;tunnel:1.0.0
usys/version/nano2
updateDependencies:1.0.1;ipconfig:1.0.0;gencamparams:1.0.0;camerarosnode:1.0.0;03persontrack:2.1.0;imageai:1.0.2;faceLightServer:1.0.1;slamDetector:1.0.0;wsaudio:1.0.0;faceLightMqtt:1.0.0
usys/version/nano1
updateDependencies:1.0.1;ipconfig:1.0.0;gencamparams:1.0.0;camerarosnode:1.0.0;03persontrack:2.1.0;imageai:1.0.2;faceLightServer:1.0.1;slamDetector:1.0.0;wsaudio:1.0.0;faceLightMqtt:1.0.0
controller/run ok
programming/run on
programming/current_action stop
robot/state ??.??.????.??.??aH?lR??'<M?1??>??>$???#?9?E?:C???
robot/state ??.??.????.??.??aH?lR??'<M?1??>??>$???#?9?E?:C???
robot/state ??.??.????.??.??aH?lR??'<M?1??>??>$???#?9?E?:C???
bms/state
firmware/version %%!$$!$#"$$!$FA
controller/current_action (null)
You can also sniff the stick movements.
mosquitto_sub -h 192.168.12.1 -t "controller/stick"
You can send these MQTT commands to control the bot always
mosquitto_pub -h 192.168.12.1 -d -t "controller/action" -m "standUp"
mosquitto_pub -h 192.168.12.1 -d -t "controller/action" -m "standDown"
mosquitto_pub -h 192.168.12.1 -d -t "controller/action" -m "run"
mosquitto_pub -h 192.168.12.1 -d -t "controller/action" -m "walk"
mosquitto_pub -h 192.168.12.1 -d -t "controller/action" -m "climb"
You must be in SDK mode 2 to send these (L1+L2 & start)
mosquitto_pub -h 192.168.12.1 -d -t "controller/action" -m "dance1"
mosquitto_pub -h 192.168.12.1 -d -t "controller/action" -m "dance2"
mosquitto_pub -h 192.168.12.1 -d -t "controller/action" -m "jumpYaw"
mosquitto_pub -h 192.168.12.1 -d -t "controller/action" -m "straightHand1"
These commands seem to be somehow black listed on the go1
mosquitto_pub -h 192.168.12.1 -d -t "controller/action" -m "backflip"
mosquitto_pub -h 192.168.12.1 -d -t "controller/action" -m "dance3
mosquitto_pub -h 192.168.12.1 -d -t "controller/action" -m "dance4
These commands control the stick movement
mosquitto_pub -h 192.168.12.1 -d -t "controller/stick" -m <see format below>
Stick format is as follows
var c = new Float32Array(4);
(c[0] = e.lx),
(c[1] = e.rx),
(c[2] = e.ry),
(c[3] = e.ly),
t.publish("controller/stick", c.buffer, { qos: 0 });
You can parse stick output with the following code. Ranges go from 1 to -1 with 0 being center.
import paho.mqtt.client as mqtt
import binascii
import struct
def on_connect(client, userdata, flags, rc):
print("Connected with result code {0}".format(str(rc)))
client.subscribe("controller/stick")
def on_message(client, userdata, msg):
[lx,rx,ry,ly] = struct.unpack('ffff', msg.payload)
print("Message received-> " + msg.topic + " " + str([lx,rx,ry,ly]))
client = mqtt.Client("Stick Data")
client.on_connect = on_connect
client.on_message = on_message
client.connect("192.168.12.1", 1883, 60)
client.loop_forever()
This example code will make the dog lay down, stand up, switch to walk mode, and go full speed in one direction for a second before stopping
The motion control device at 192.168.123.10 may be an STM32 running MicroROS.
https://micro.ros.org/docs/overview/hardware/
https://www.youtube.com/watch?v=Sz-nllmtcc8
https://github.com/micro-ROS/micro_ros_stm32cubemx_utils
Physically tearing down the motion controller reveals attempts to grind off the chip markings.
Interface port documentation reveals it to be an "H7", which refers to STM32H7
STM32H7 - https://www.st.com/en/microcontrollers-microprocessors/stm32h7-series.html
https://github.com/micro-ROS/NuttX/blob/master/arch/arm/src/stm32h7/stm32_gpio.h
We can clearly tell from the poorly ground "e3", "ARM", "VQ" "H7" & "43" that we are dealing with an STM32H743
There are two variants due to ST parts shorages, an unknown BGA version, and a surface mount LQFP100 with the following pinout:
It absolutly has MIT Cheetah based code running within. You can clearly see the lineage just by looking at 1057343368-MIT.pdf.
The STM RTOS has tftp enabled for updates.
./autostart/updateDependencies/update_firmware.py:
atftp = "sleep 5; atftp -p -l " + sys.argv[1] + " 192.168.123.10 --tftp-timeout 10;"
It is assumed to be a variant of IAP over tftp per ST spec.
https://www.st.com/resource/en/application_note/an3376-stm32f2x7-inapplication-programming-iap-over-ethernet-stmicroelectronics.pdf
This application note is intended for developers using the STM32F2x7 microcontroller. It provides implementation solutions for In-Application Programming (IAP) using the
STM32F2x7 Ethernet communications interface.
Two possible solutions are provided on top of the LwIP TCP/IP stack:
●IAP using TFTP (Trivial File Transfer Protocol)
The motion controller update firmware does indeed use the LWIP stack, and happens to be STM32 based.
$ strings ../Unitree_RE/CoH017_35.bin | grep LWIP
../LWIP/Target/ethernetif.c
Timeout time too long, max is LWIP_UINT32_MAX/4 msecs
If you tftp to 192.168.161.10, the Unitree go1 will immediately drop.
pi@raspberrypi:~ $ atftp -g -r "*.bin" 192.168.123.10 69 --trace --verbose
Trace mode on.
Verbose mode on.
sent RRQ <file: *.bin, mode: octet <>>
received DATA <block: 1, size: 0>
sent ACK <block: 1>
Two apps: /home/pi/Unitree/autostart/sportMode/bin/Legged_sport /home/pi/Unitree/autostart/appTransit/build/appTransit
root@raspberrypi:/home/pi# netstat -ap | grep 192.168.123.10
...
udp 5504 0 192.168.123.161:8008 192.168.123.10:8007 ESTABLISHED 1460/./bin/Legged_s
udp 0 0 192.168.123.161:8093 192.168.123.10:8007 ESTABLISHED 1752/./build/appTra
root@raspberrypi:/home/pi# fuser -n udp 8008
8008/udp: 1460
root@raspberrypi:/home/pi# fuser -n udp 8093
8093/udp: 1752
root@raspberrypi:/home/pi# ps -ax | grep 1460
1460 ? SLl 3:08 ./bin/Legged_sport
root@raspberrypi:/home/pi# ps -ax | grep 1752
1752 ? Sl 0:02 ./build/appTransit
Look familiar?
constexpr int UDP_CLIENT_PORT = 8080; // local port
constexpr int UDP_SERVER_PORT = 8007; // target port
constexpr char UDP_SERVER_IP_BASIC[] = "192.168.123.10"; // target IP address
constexpr char UDP_SERVER_IP_SPORT[] = "192.168.123.161"; // target IP address
printf("[Backflip DataReader] Setup for mini cheetah\n");
printf("[Cheetah Test] Test initialization is done\n");
https://github.com/search?q=org%3Amit-biomimetics+%22Cheetah+Test%22&type=code https://github.com/search?q=org%3Amit-biomimetics+%22Setup+for+mini+cheetah%22&type=code
This code is MIT license. https://github.com/mit-biomimetics/Cheetah-Software/blob/master/LICENSE
Unitree now acknowledges this:
https://github.com/unitreerobotics/Acknowledgement/blob/055126fc1e9148d23a212dd1cf99e82d084b0174/README.md#L11
Cheetah-Software, developed by MIT Biomimetic Robotics Lab. https://github.com/mit-biomimetics/Cheetah-Software
Newer firmware versions include the MIT License as well.
https://github.com/unitreerobotics/unitree_legged_sdk/issues/55
Dissassembly of the SportMode binary will show clear refrences to the MIT Cheetah HardwareBridge.
https://mit-biomimetics.github.io/d9/da0/_hardware_bridge_8cpp_source.html
https://mit-biomimetics.github.io/d5/d90/_control_parameters_8cpp.html
https://github.com/mit-biomimetics/Cheetah-Software/blob/master/common/src/Controllers/FootSwingTrajectory.cpp
The backflip is sown in the marketing video, but it is seemingly disabled. This is how to re-enable it. Ssh into the ras pi with password 123
pi@raspberrypi:~/ $ mv ~/Unitree/autostart/sportMode/path_files/bk_offline_backflip_new_v12.dat ~/Unitree/autostart/sportMode/path_files/offline_backflip_new_v12.dat
pi@raspberrypi:~/ $ sudo reboot
After reboot:
Press "L1 + Y" on the controller
How does it work? Well it is MIT Cheetah code. Specifically Execute a flip via ComputeCommand() code.
Start loading the "control plan" https://github.com/mit-biomimetics/Cheetah-Software/blob/master/user/MIT_Controller/Controllers/BackFlip/DataReader.cpp#L28
Joint positions https://github.com/mit-biomimetics/Cheetah-Software/blob/master/user/MIT_Controller/FSM_States/FSM_State_BackFlip.h#L46
Null out the position vector, then start feeding it full of data from the .dat file. https://github.com/mit-biomimetics/Cheetah-Software/blob/master/user/MIT_Controller/FSM_States/FSM_State_BackFlip.cpp#L28
"Plan offsets", x, z, yaw, hips, knees, etc. https://github.com/mit-biomimetics/Cheetah-Software/blob/master/user/MIT_Controller/Controllers/BackFlip/DataReader.hpp#L6
Dat file for backflip https://github.com/mit-biomimetics/Cheetah-Software/blob/master/user/MIT_Controller/Controllers/BackFlip/backflip.dat
Older version of the repo: https://github.com/dbdxnuliba/mit-biomimetics_Cheetah/blob/master/user/WBC_Controller/WBC_States/BackFlip/data/backflip.dat https://github.com/dbdxnuliba/mit-biomimetics_Cheetah/blob/master/user/WBC_Controller/WBC_States/BackFlip/data/mc_flip.dat
This is the same as the unitree .dat file, but Unitree crafted it. https://github.com/MAVProxyUser/YushuTechUnitreeGo1/blob/main/offline_backflip_new_v12.dat
Be careful the dogs hips are weak and will eventually break from stress. Do not over use this feature.
One variation in the MIT Cheetah Design is, instead of the MCU being connected to a Zigbee or RC radio, it uses Bluetooth LE.
# hcitool scan
Scanning ...
98:DA:10:01:18:4E Unitree-31F119
# bluetoothctl scan on
Discovery started
[CHG] Device 98:DA:10:01:18:4E Name: Unitree-31F119
[CHG] Device 98:DA:10:01:18:4E Alias: Unitree-31F119
[CHG] Device 98:DA:10:01:18:4E Class: 0x00001f00
[CHG] Device 98:DA:10:01:18:4E UUIDs: 0000ffe0-0000-1000-8000-00805f9b34fb
[CHG] Device 98:DA:10:01:18:4E UUIDs: ffcacade-afde-cade-defa-cade00000000
[CHG] Device 98:DA:10:01:18:4E UUIDs: 00001200-0000-1000-8000-00805f9b34fb
[CHG] Device 98:DA:10:01:18:4E UUIDs: 00000100-0000-1000-8000-00805f9b34fb
[CHG] Device 98:DA:10:01:18:4E UUIDs: 00000001-0000-1000-8000-00805f9b34fb
[CHG] Device 98:DA:10:01:18:4E UUIDs: 00001101-0000-1000-8000-00805f9b34fb
[CHG] Device 98:DA:10:01:18:4E UUIDs: 00000003-0000-1000-8000-00805f9b34fb
[CHG] Device 98:DA:10:01:18:4E Icon is nil
# bluetoothctl info 98:DA:10:01:18:4E
Device 98:DA:10:01:18:4E (public)
Name: Unitree-31F119
Alias: Unitree-31F119
Class: 0x00001f00
Paired: no
Trusted: no
Blocked: no
Connected: no
LegacyPairing: no
UUID: Unknown (0000ffe0-0000-1000-8000-00805f9b34fb)
UUID: Vendor specific (ffcacade-afde-cade-defa-cade00000000)
UUID: PnP Information (00001200-0000-1000-8000-00805f9b34fb)
UUID: L2CAP (00000100-0000-1000-8000-00805f9b34fb)
UUID: SDP (00000001-0000-1000-8000-00805f9b34fb)
UUID: Serial Port (00001101-0000-1000-8000-00805f9b34fb)
UUID: RFCOMM (00000003-0000-1000-8000-00805f9b34fb)
ManufacturerData Key: 0x0000
ManufacturerData Value:
98 da 10 01 18 4e .....Ne
# sdptool browse 98:DA:10:01:18:4E
Browsing 98:DA:10:01:18:4E ...
Service Name: Port
Service RecHandle: 0x10001
Service Class ID List:
"Serial Port" (0x1101)
Protocol Descriptor List:
"L2CAP" (0x0100)
"RFCOMM" (0x0003)
Channel: 1
# gatttool -b 98:DA:10:01:18:4E -I
[98:DA:10:01:18:4E][LE]> connect
Attempting to connect to 98:DA:10:01:18:4E
Connection successful
[98:DA:10:01:18:4E][LE]> primary
attr handle: 0x0001, end grp handle: 0x0009 uuid: 00001800-0000-1000-8000-00805f9b34fb
attr handle: 0x000a, end grp handle: 0x000d uuid: 00001801-0000-1000-8000-00805f9b34fb
attr handle: 0x000e, end grp handle: 0x0020 uuid: 0000180a-0000-1000-8000-00805f9b34fb
attr handle: 0x0021, end grp handle: 0xffff uuid: 0000ffe0-0000-1000-8000-00805f9b34fb
[98:DA:10:01:18:4E][LE]> characteristics 0x000e 0x0020
handle: 0x000f, char properties: 0x02, char value handle: 0x0010, uuid: 00002a29-0000-1000-8000-00805f9b34fb
handle: 0x0011, char properties: 0x02, char value handle: 0x0012, uuid: 00002a24-0000-1000-8000-00805f9b34fb
handle: 0x0013, char properties: 0x02, char value handle: 0x0014, uuid: 00002a25-0000-1000-8000-00805f9b34fb
handle: 0x0015, char properties: 0x02, char value handle: 0x0016, uuid: 00002a26-0000-1000-8000-00805f9b34fb
handle: 0x0017, char properties: 0x02, char value handle: 0x0018, uuid: 00002a27-0000-1000-8000-00805f9b34fb
handle: 0x0019, char properties: 0x02, char value handle: 0x001a, uuid: 00002a28-0000-1000-8000-00805f9b34fb
handle: 0x001b, char properties: 0x02, char value handle: 0x001c, uuid: 00002a23-0000-1000-8000-00805f9b34fb
handle: 0x001d, char properties: 0x02, char value handle: 0x001e, uuid: 00002a2a-0000-1000-8000-00805f9b34fb
handle: 0x001f, char properties: 0x02, char value handle: 0x0020, uuid: 00002a50-0000-1000-8000-00805f9b34fb
[98:DA:10:01:18:4E][LE]> char-read-hnd 0x0010
Characteristic value/descriptor: 43 45 56 41 00 00 00 00 00 00
This tells us that the device is made by CEVA, and the other characteristics tell more about the specific chip.
$ echo -e "\x43\x45\x56\x41"
CEVA BT 4.0
Other characteristics reveal Firmware 01.1 Hardware SM-1 Software 01.1
The RFComm port does not seem to need pairing
# rfcomm connect /dev/rfcomm0 98:DA:10:01:18:4E
Connected /dev/rfcomm0 to 98:DA:10:01:18:4E on channel 1
Press CTRL-C for hangup
# screen /dev/rfcomm0 115200
��:ek��MD0:G��:��MD�:GT��:��GY��:ek&�G��:��G���:��MD0:GT��:#�:MD0:G���:��MD0:G���:ek&...
The following Python code can be used to decode stick data from the remote
import serial
import binascii
import struct
# rfcomm connect /dev/rfcomm0 98:DA:10:01:18:4E
with serial.Serial('/dev/rfcomm0', 115200, timeout=1) as ser:
while True:
val = ser.read(20)
[lx,rx,ry,ly,b1,b2,b3] = struct.unpack('ffffcce', val)
print(str([lx,rx,ry,ly])) # Stick values
print( '{0:08b}'.format(int(binascii.hexlify(b1),16)) ) # Rocker Switches
print( '{0:08b}'.format(int(binascii.hexlify(b2),16)) ) # Front Panel Buttons
print("------------------------------------------")
You can also use an Ardiuno to hook this stream to use it as a remote trigger. https://github.com/MAVProxyUser/YushuTechUnitreeGo1/tree/main/ArduinoBTRemoteFire
You can pair with the device with 1234 as the key
# bluetoothctl --agent KeyboardDisplay
Agent registered
[bluetooth]# pair 98:DA:10:01:18:4E
Attempting to pair with 98:DA:10:01:18:4E
[CHG] Device 98:DA:10:01:18:4E Connected: yes
Request PIN code
[agent] Enter PIN code: 1234
[CHG] Device 98:DA:10:01:18:4E Paired: yes
Pairing successful
Other keys fail
[bluetooth]# pair 98:DA:10:01:18:4E
Attempting to pair with 98:DA:10:01:18:4E
[CHG] Device 98:DA:10:01:18:4E Connected: yes
Request PIN code
[agent] Enter PIN code: 0912
Failed to pair: org.bluez.Error.AuthenticationFailed
[CHG] Device 98:DA:10:01:18:4E Connected: no
The BLE "central" role seems to be performed by the Dog, and the Transmitter is the peripheral.
The mobile app uses MQTT over websocket in order to function. Most of the calls are redirected to the appropriate service by Nginx on the dog.
# cat sites-available/default | grep location
location / {
location ^~ /mqtt {
location ^~ /upload {
location / {
location ^~ /mqtt {
location ^~ /upload {
location ^~ /map {
location ^~ /cam1 {
location ^~ /cam2 {
location ^~ /audio {
location ^~ /cam3 {
location ^~ /cam4 {
location ^~ /cam5 {
location ^~ /human {
On an iOS device you can use RVI utils to sniff the connection https://developer.apple.com/documentation/network/recording_a_packet_trace
$ rvictl -s 0000xxxx-yourdeviceuuid
Starting device 0000xxxx-yourdeviceuuid [SUCCEEDED] with interface rvi0
$ sudo tcpdump -i rvi0 -xX -s2000 host 192.168.12.1 and not port domain -w tcpdump.pcap
The initial connection hits /mqtt on the web server.
GET /mqtt HTTP/1.1
Host: 192.168.12.1
Pragma: no-cache
Accept: */*
Sec-WebSocket-Key: qoldXnNLZu0GftYE7x+XgA==
Sec-WebSocket-Version: 13
Sec-WebSocket-Extensions: permessage-deflate
Sec-WebSocket-Protocol: mqtt
Cache-Control: no-cache
Accept-Language: en-US,en;q=0.9
Origin: capacitor://localhost
User-Agent: Mozilla/5.0 (iPhone; CPU iPhone OS 15_5 like Mac OS X) AppleWebKit/605.1.15 (KHTML, like Gecko) Mobile/15E148
Connection: Upgrade
Accept-Encoding: gzip, deflate
Upgrade: websocket
It immediately switches to Websocket protocol.
HTTP/1.1 101 Switching Protocols
Server: nginx/1.14.2
Date: Sat, 06 Nov 2021 02:17:43 GMT
Connection: upgrade
Upgrade: WebSocket
Sec-WebSocket-Accept: aLEJi/WW+zQ1NjZiE5SszGyjI+4=
Sec-WebSocket-Protocol: mqtt
You can take apart the supporting .js files and make them more readable with "prettier". They are Webpack 4 encoded files.
$ node bin-prettier.js ../../chunk-ab73ca30.b65f7572.js
You can find the respective files in:
Go1_2021_12_10_d799e0c3/raspi/Unitree/autostart/webMonitor/dist/
The MQTT locic can be further understood by disassembling /home/pi/Unitree/autostart/appTransit/build/appTransit.
bVar1 = std::operator==(pbVar3,"controller/action");
if (bVar1 != false) {
pmVar2 = (message *)
std::__shared_ptr_access<mqtt::message_const,(__gnu_cxx::_Lock_policy)2,false,false>::
operator->(this_01);
pbVar3 = (basic_string *)mqtt::message::get_payload_str[abi:cxx11](pmVar2);
pbVar4 = std::operator<<((basic_ostream *)&std::cout,pbVar3);
std::basic_ostream<char,std::char_traits<char>>::operator<<
((basic_ostream<char,std::char_traits<char>> *)pbVar4,
std::endl<char,std::char_traits<char>>);
pmVar2 = (message *)
std::__shared_ptr_access<mqtt::message_const,(__gnu_cxx::_Lock_policy)2,false,false>::
operator->(this_01);
mqtt::message::get_payload_str[abi:cxx11](pmVar2);
std::__cxx11::basic_string<char,std::char_traits<char>,std::allocator<char>>::basic_string
(abStack48);
/* try { // try from 0010bf9c to 0010bfe3 has its CatchHandler @ 0010c458 */
std::__cxx11::basic_string<char,std::char_traits<char>,std::allocator<char>>::operator=
((basic_string<char,std::char_traits<char>,std::allocator<char>> *)(this + 0x970),
abStack48);
bVar1 = std::operator==(abStack48,"walk");
if (bVar1 == false) {
bVar1 = std::operator==(abStack48,"run");
if (bVar1 == false) {
bVar1 = std::operator==(abStack48,"climb");
if (bVar1 == false) {
bVar1 = std::operator==(abStack48,"stand");
if (bVar1 == false) {
bVar1 = std::operator==(abStack48,"dance1");
if (bVar1 == false) {
bVar1 = std::operator==(abStack48,"dance2");
if (bVar1 == false) {
bVar1 = std::operator==(abStack48,"dance3");
if (bVar1 == false) {
bVar1 = std::operator==(abStack48,"dance4");
if (bVar1 == false) {
bVar1 = std::operator==(abStack48,"backflip");
if (bVar1 == false) {
bVar1 = std::operator==(abStack48,"jumpYaw");
if (bVar1 == false) {
bVar1 = std::operator==(abStack48,"straightHand1");
if (bVar1 == false) {
bVar1 = std::operator==(abStack48,"standUp");
if (bVar1 == false) {
bVar1 = std::operator==(abStack48,"standDown");
if (bVar1 == false) {
bVar1 = std::operator==(abStack48,"damping");
if (bVar1 == false) {
bVar1 = std::operator==(abStack48,"recoverStand");
if (bVar1 != false) {
MAX and EDU versions of the Unitree dogs can include a 4G cellular modem. The MAX includes a Quectel EG25-G connected to the RasPI
https://www.quectel.com/wp-content/uploads/pdfupload/EP-FMEG25GMPCIs_Specification_V1.0-1609137.pdf
https://www.t-mobile.com/content/dam/tfb/pdf/tfb-iot/Quectel_EG25-G_LTE_Standard_Specification_V1.3.pdf
https://fccid.io/XMR201903EG25G/User-Manual/user-manual-4219711.pdf
It includes a GNSS function, which is why the GPS antenna in the Go1 is connected to this device.
5G support is assumed to be provided by a Quctel RM5 series chipset, but this has not been confirmed yet.
https://www.quectel.com/product/5g-rm50xq-series
https://www.quectel.com/product/5g-rm510q-gl
https://www.quectel.com/wp-content/uploads/2021/02/Quectel_Product_Brochure_EN_V6.1.pdf
There are some known vulnerabilities in the Quectel series, that may impact the dog depending on the firmware on your cellular card.
CVE-2021-31698: Quectel EG25-G devices through 202006130814 allow executing arbitrary code remotely by using an AT command to place shell metacharacters in quectel_handle_fumo_cfg input in atfwd_daemon.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-31698
"Code execution as root via AT commands on the Quectel EG25-G modem"
https://nns.ee/blog/2021/04/03/modem-rce.html
Support provided by Quectel EC25
https://osmocom.org/projects/quectel-modems/wiki/EC25_Linux
Known to be ridden with FOTA backdoors
https://penthertz.com/blog/mobile-iot-modules-FOTA-backdooring-at-scale.html
"All the 4G Modules Could be Hacked" talk from Defcon 2019
https://i.blackhat.com/USA-19/Wednesday/us-19-Shupeng-All-The-4G-Modules-Could-Be-Hacked.pdf
https://nns.ee/blog/2021/04/03/modem-rce.html
The variant tested was not vulnerable to the obvious code execution: https://nvd.nist.gov/vuln/detail/CVE-2021-31698
root@raspberrypi:~# lsusb | grep Quec
Bus 001 Device 003: ID 2c7c:0125 Quectel Wireless Solutions Co., Ltd. EC25 LTE modem
root@raspberrypi:~# minicom -b 115200 -D /dev/ttyUSB2
Welcome to minicom 2.7.1
OPTIONS: I18n
Compiled on May 6 2018, 07:48:54.
Port /dev/ttyUSB2, 18:07:01
Press CTRL-A Z for help on special keys
ATE1<enter>
OK
ATI
Quectel
EC20F
Revision: EC20CEFRSGR08A03M2G
AT+QFUMOCFG=?
+QFUMOCFG: "update",(0,1)
OK
AT+QFUMOCFG="dmacc","`reboot`"
ERROR
Additionally ADB is disabled in firmware per: https://forums.quectel.com/t/eg25-g-cannot-enable-adb-with-at-command/4809 "ADB port in disblae in firmware. It’s not able to be used in standard module."
By default the enable command is refused.
AT+QCFG="usbcfg",0x2c7c,0x125,1,1,1,1,1,1,1
OK
AT+QCFG="usbcfg"
+QCFG: "usbcfg",0x2C7C,0x0125,1,1,1,1,1,0,1
OK
You can use an unlocker tool however after using the AT command to obtain the key https://xnux.eu/devices/feature/qadbkey-unlock.c
AT+QADBKEY?
+QADBKEY: 39804286
root@raspberrypi:~# wget https://xnux.eu/devices/feature/qadbkey-unlock.c
--2022-07-13 18:59:07-- https://xnux.eu/devices/feature/qadbkey-unlock.c
Resolving xnux.eu (xnux.eu)... 195.181.215.36, 2001:15e8:110:3624::1
Connecting to xnux.eu (xnux.eu)|195.181.215.36|:443... connected.
HTTP request sent, awaiting response... 200 OK
Length: 658 [text/plain]
Saving to: ‘qadbkey-unlock.c’
qadbkey-unlock.c 100%[=============================================================================================================>] 658
--.-KB/s in 0s
2022-07-13 18:59:09 (1.41 MB/s) - ‘qadbkey-unlock.c’ saved [658/658]
root@raspberrypi:~# gcc qadbkey-unlock.c -o qadbkey-unlock -lcrypt
root@raspberrypi:~# ./qadbkey-unlock
Usage: unlock <serial>
Use AT+QADBKEY? to get the serial number.
root@raspberrypi:~# ./qadbkey-unlock 39804286
AT+QADBKEY="OyFBlcSkpqh9Xt2i"
AT+QCFG="usbcfg",0x2C7C,0x125,1,1,1,1,1,1,0
To disable ADB, run: (beware that modem will not be able to enter sleep with ADB enabled!!)
AT+QCFG="usbcfg",0x2C7C,0x125,1,1,1,1,1,0,0
pi@raspberrypi:~ $ adb devices
List of devices attached
* daemon not running; starting now at tcp:5037
* daemon started successfully
(no serial number) device
pi@raspberrypi:~ $ adb shell
/ # hostname
mdm9607
/ # id
uid=0(root) gid=0(root) groups=1004,1007,1011,1015(sdcard),1028,3001,3002,3003,3006
If you see this, you may need to reboot.
root@raspberrypi:/home/pi# adb devices
List of devices attached
(no serial number) no permissions (user in plugdev group; are your udev rules wrong?); see [http://developer.android.com/tools/device.html]
Alternately you can try:
root@raspberrypi:/home/pi# sudo usermod -aG plugdev $LOGNAME
root@raspberrypi:/etc/udev/rules.d# cat > 51-android.rules
SUBSYSTEM=="usb",ATTRS{idVendor}=="2c7c",ATTRS{idProduct}=="0125",MODE="0666",GROUP="plugdev"
root@raspberrypi:/etc/udev/rules.d# udevadm control --reload-rules
and reboot
While the go1 MAX is connected to 45/5g the dog does call home to the Zhexi cloud
pi@raspberrypi:~ $ netstat -ap | grep ESTABLISHED | grep 100.100.57.114
(Not all processes could be identified, non-owned process info
will not be shown, you would have to be root to see it all.)
tcp 0 0 100.100.57.114:53570 124.156.140.55:5670 ESTABLISHED -
tcp 0 0 100.100.57.114:52582 124.156.140.55:http ESTABLISHED -
tcp 0 0 100.100.57.114:52578 124.156.140.55:http ESTABLISHED -
tcp 0 0 100.100.57.114:55788 134.175.175.55:9998 ESTABLISHED -
You can disbale the tunnel by killing the cloudsail daemon
root@raspberrypi:/home/pi/Unitree/autostart# systemctl disable CSClientDaemon
Removed /etc/systemd/system/multi-user.target.wants/CSClientDaemon.service.
You can also move the auto start "tunnel" out of the way so it is unable to autostart
root@raspberrypi:/home/pi/Unitree/autostart# mv tunnel/ /root/tunnel_disabled/
In order to use 4G on the Unitree MAX series in the USA, you will have to make some changes to the internal configuration.
Get a T-Mobile SIM card.
Edit the config file for the Unitree configNetwork autostart service, at the very least the APN needs to be changed off China Unicom.
pi@raspberrypi:~ $ diff bk_Unitree/ Unitree -ru
diff -ru bk_Unitree/autostart/configNetwork/ppp/quectel-chat-connect Unitree/autostart/configNetwork/ppp/quectel-chat-connect
--- bk_Unitree/autostart/configNetwork/ppp/quectel-chat-connect 2021-11-05 04:31:12.986184175 -0900
+++ Unitree/autostart/configNetwork/ppp/quectel-chat-connect 2021-11-05 18:29:08.267718437 -0900
@@ -9,6 +9,6 @@
OK ATE0
OK ATI;+CSUB;+CSQ;+CPIN?;+COPS?;+CGREG?;&D2
# Insert the APN provided by your network operator, default apn is 3gnet
-OK AT+CGDCONT=1,"IP","3gnet",,0,0
+OK AT+CGDCONT=1,"IP","fast.t-mobile.com",,0,0
OK ATD*99#
CONNECT
diff -ru bk_Unitree/autostart/configNetwork/ppp/quectel-ppp Unitree/autostart/configNetwork/ppp/quectel-ppp
--- bk_Unitree/autostart/configNetwork/ppp/quectel-ppp 2021-11-05 04:31:12.986184175 -0900
+++ Unitree/autostart/configNetwork/ppp/quectel-ppp 2022-07-08 07:20:32.160480515 -0900
@@ -3,7 +3,7 @@
#Modem path, like /dev/ttyUSB3,/dev/ttyACM0, depend on your module, default path is /dev/ttyUSB3
/dev/ttyUSB3 115200
#Insert the username and password for authentication, default user and password are test
-user "test" password "test"
+user "user" password "password"
# The chat script, customize your APN in this file
connect 'chat -s -v -f /etc/ppp/peers/quectel-chat-connect'
# The close script
diff -ru bk_Unitree/autostart/configNetwork/ppp/quectel-pppd.sh Unitree/autostart/configNetwork/ppp/quectel-pppd.sh
--- bk_Unitree/autostart/configNetwork/ppp/quectel-pppd.sh 2021-11-05 04:31:12.986184175 -0900
+++ Unitree/autostart/configNetwork/ppp/quectel-pppd.sh 2022-07-08 07:20:48.641378405 -0900
@@ -3,9 +3,9 @@
#quectel-pppd devname apn user password
echo "quectel-pppd options in effect:"
QL_DEVNAME=/dev/ttyUSB3
-QL_APN=3gnet
-QL_USER=user
-QL_PASSWORD=passwd
+QL_APN=fast.t-mobile.com
+QL_USER="user"
+QL_PASSWORD="password"
if [ $# -ge 1 ]; then
QL_DEVNAME=$1
echo "devname $QL_DEVNAME # (from command line)"
You'll need to add the libqmi tools.
root@raspberrypi:/home/pi$ apt-get update
root@raspberrypi:/home/pi$ apt-get install libqmi-utils
The mmcli tool will help get basic informaiton that you may need to give your cellular provider such as IMEI, and ESN. You can also make sure the device is not SIM locked.
root@raspberrypi:/home/pi$ mmcli -m 0
--------------------------------
IP | supported: ipv4, ipv6, ipv4v6
--------------------------------
3GPP | imei: DEADBEEFCAFE
--------------------------------
3GPP EPS | ue mode of operation: csps-2
--------------------------------
CDMA | meid: DEADBEEFCAFEBABE
| esn: BEEFCAFE
| activation: not-activated
--------------------------------
SIM | dbus path: /org/freedesktop/ModemManager1/SIM/0
If you need to double check the bearer information you can.
root@raspberrypi:/home/pi$ mmcli -b 0
...
--------------------------------
Properties | apn: fast.t-mobile.com
| roaming: allowed
--------------------------------
IPv4 configuration | method: static
| address: 5.4.3.1
| prefix: 30
| gateway: 5.4.3.2
| dns: 1.1.0.4, 1.1.0.2
...
You can use qmicli to verify the APN profile setting slots as well. All of this useful for troubleshooting.
root@raspberrypi:/home/pi$ qmicli -p -d /dev/cdc-wdm0 --wds-get-profile-list=3gpp
Profile list retrieved:
[1] 3gpp -
APN: 'fast.t-mobile.com'
PDP type: 'ipv4'
PDP context number: '1'
Username: ''
Password: ''
Auth: 'none'
No roaming: 'no'
APN disabled: 'no'
[2] 3gpp -
APN: 'ims'
PDP type: 'ipv4-or-ipv6'
PDP context number: '2'
Username: ''
Password: ''
Auth: 'none'
No roaming: 'no'
APN disabled: 'no'
[3] 3gpp -
APN: ''
PDP type: 'ipv4-or-ipv6'
PDP context number: '3'
Username: ''
Password: ''
Auth: 'none'
No roaming: 'no'
APN disabled: 'no'
Scanning for available networks is a good way to troubleshoot as well
root@raspberrypi:/home/pi$ mmcli -m 0 --3gpp-scan --timeout=300
---------------------
3GPP scan | networks: 312250 - T-Mobile (lte, current)
| 311490 - 311 490 (lte, available)
| 311882 - 311 882 (lte, available)
| 312530 - 312 530 (lte, available)
| 310120 - Sprint (lte, available)
As mentioned above the built in Quectel module can provide pseudo GPS output, the following commands will enable that functionality.
root@raspberrypi:/home/pi$ mmcli -m 0 --location-status
------------------------
Location | capabilities: 3gpp-lac-ci, gps-raw, gps-nmea, cdma-bs, agps
| enabled: 3gpp-lac-ci, cdma-bs
| signals: no
------------------------
GPS | refresh rate: 30 seconds
root@raspberrypi:/home/pi$ mmcli -m 0 --location-enable-gps-raw --location-enable-gps-nmea
successfully setup location gathering
root@raspberrypi:/home/pi$ mmcli -m 0 --location-get
--------------------------
3GPP | operator code: XX
| operator name: YY
| location area code: ZZ
| tracking area code: AA
| cell id: 0000000000
--------------------------
GPS | nmea: $GPGGA,,,,,,0,,,,,,,,*66
| $GPGSA,A,1,,,,,,,,,,,,,,,,*32
| $GPVTG,,T,,M,,N,,K,N*2C
| $GPRMC,,V,,,,,,,,,,N*53
| $GPGSV,1,1,02,00,,,00,00,,,00,1*68
Arguably a malicious backdoor, this is likely a leftover remanant from testing at the Unitree factor. None the less, there is an autoconnect network called "Unitree-2.4G" in the wpa supplicant config. This can be used to take arbitrary control of the dog.
pi@raspberrypi:/etc $ cat ./wpa_supplicant/wpa_supplicant.conf
ctrl_interface=DIR=/var/run/wpa_supplicant GROUP=netdev
update_config=1
country=US
network={
ssid="Unitree-5G"
psk="Unitree#9035"
key_mgmt=WPA-PSK
disabled=1
}
network={
ssid="Unitree-WiFi-5G"
psk="Unitree#9035"
key_mgmt=WPA-PSK
disabled=1
}
network={
ssid="Unitree-2.4G"
psk="Unitree#9035"
key_mgmt=WPA-PSK
}
Supplicant auto starts at boot
pi@raspberrypi:/etc $ ps -ax | grep wpa
470 ? Ss 0:00 /sbin/wpa_supplicant -u -s -O /run/wpa_supplicant
756 ? Ss 0:00 wpa_supplicant -B -c/etc/wpa_supplicant/wpa_supplicant.conf -iwlan0 -Dnl80211,wext
8444 pts/1 S+ 0:00 grep --color=auto wpa
If you are quick you can catch it, and use it to login to the dog. Automation makes it failproof.
$ ping 192.168.1.115
PING 192.168.1.115 (192.168.1.115): 56 data bytes
Request timeout for icmp_seq 0
Request timeout for icmp_seq 1
Request timeout for icmp_seq 2
Request timeout for icmp_seq 3
Request timeout for icmp_seq 4
Request timeout for icmp_seq 5
Request timeout for icmp_seq 6
ping: sendto: No route to host
Request timeout for icmp_seq 7
ping: sendto: Host is down
Request timeout for icmp_seq 8
ping: sendto: Host is down
Request timeout for icmp_seq 9
ping: sendto: Host is down
Request timeout for icmp_seq 10
ping: sendto: Host is down
Request timeout for icmp_seq 11
ping: sendto: Host is down
Request timeout for icmp_seq 12
Request timeout for icmp_seq 13
64 bytes from 192.168.1.115: icmp_seq=14 ttl=64 time=5.955 ms
64 bytes from 192.168.1.115: icmp_seq=15 ttl=64 time=2.563 ms
64 bytes from 192.168.1.115: icmp_seq=16 ttl=64 time=3.939 ms
64 bytes from 192.168.1.115: icmp_seq=17 ttl=64 time=3.791 ms
64 bytes from 192.168.1.115: icmp_seq=18 ttl=64 time=3.299 ms
Request timeout for icmp_seq 19
Request timeout for icmp_seq 20
Request timeout for icmp_seq 21
Request timeout for icmp_seq 22
Request timeout for icmp_seq 23
Request timeout for icmp_seq 24
Roughly 40 seconds into the boot process this is available for literally 5 seconds.
Default credentials work as expected
$ ssh -o StrictHostKeyChecking=accept-new -v pi@192.168.1.115 "hostname;id;exit"
OpenSSH_8.6p1, LibreSSL 3.3.6
...
debug1: Connecting to 192.168.1.115 [192.168.1.115] port 22.
debug1: Connection established.
...
debug1: Local version string SSH-2.0-OpenSSH_8.6
debug1: Remote protocol version 2.0, remote software version OpenSSH_7.9p1 Debian-10+deb10u2+rpt1
debug1: compat_banner: match: OpenSSH_7.9p1 Debian-10+deb10u2+rpt1 pat OpenSSH* compat 0x04000000
debug1: Authenticating to 192.168.1.115:22 as 'pi'
...
debug1: Next authentication method: password
pi@192.168.1.115's password:
debug1: Authentication succeeded (password).
Authenticated to 192.168.1.115 ([192.168.1.115]:22).
...
debug1: Sending command: hostname;id;exit
...
raspberrypi
uid=1000(pi) gid=1000(pi) groups=1000(pi),4(adm),20(dialout),24(cdrom),27(sudo),29(audio),44(video),46(plugdev),60(games),100(users),105(input),109(netdev),997(gpio),998(i2c),999(spi)
debug1: client_input_channel_req: channel 0 rtype exit-status reply 0
debug1: client_input_channel_req: channel 0 rtype eow@openssh.com reply 0
debug1: channel 0: free: client-session, nchannels 1
Transferred: sent 2992, received 2892 bytes, in 0.1 seconds
Bytes per second: sent 27756.4, received 26828.7
debug1: Exit status 0
The Unitree default bringup process uses GNOME autostart, so that anything in /Unitree/autostart/
FreeDesktop enabled this: https://specifications.freedesktop.org/autostart-spec/0.5/ar01s02.html
Example: If $XDG_CONFIG_HOME is not set the Autostart Directory in the user's home directory is ~/.config/autostart/
Several scripts are ultimately launched by this technique. All initially triggerd by the auto login to the desktop
# cat etc/lightdm/lightdm.conf | grep autologin-user | grep -v \#
autologin-user=pi
# ls ./home/pi/bk_Unitree/autostart/
00roscore 01config4G_AP_Wifi 02sportMode 03triggerSport 05appManager 06appTransit 07obstacle 08utrack 09tunnel
pi@raspberrypi:~ $ cat /home/pi/.config/autostart/unitree.desktop
[Desktop Entry]
Name=unitree
Comment=unitree autostart
Exec=bash /home/pi/UnitreeUpgrade/start.sh
Terminal=false
Type=Application
Categories=System;Utility;Archiving;
StartupNotify=false
NoDisplay=true
pi@raspberrypi:~ $ cat /home/pi/UnitreeUpgrade/start.sh
#!/bin/bash
cd /home/pi/UnitreeUpgrade
python3 ./startup_manager.py &
python3 ./startup_uploader.py &
cd /home/pi/Unitree/autostart
./update.sh
The PDB has an ANNTEM JN1Q on 433mhz hard wired in for safety disconnects. It can be considered a backdoor method to kill the dog due to the weakness in the protocol spec. https://anntem.aliexpress.com/store/1101246027 (official store)
"Under the developer mode, if the robot is out of control, you can cut off the power of the built-in PDB"
https://www.youtube.com/watch?v=gDnDbuFLjys
The transmitter included is a common 2 button design using a stunted 4 button design "HFY528-4KEY ver2.1".
The HFY528 uses an EV1527 encoder IC by Silvan Chip Electronics www.sc-tech.cn:
EV1527 provides individual unique secure ID for each chip. This ID is transmitted with every outgoing packet. The receiver can learn the code
after receiving the first packet and can be programmed to receive the data from an unique transmitter. This way the communication is secure
and multiple transmitter can not interfere with the receiver operation. Suitable for operations like digital locks etc. The unique ID is one
time programmable and is already programmed at the factory. End user applications just need to identify the code and program the receiver to
communicate with specific IDs.
EV1527 and Learning Code Remotes Explained Simple: https://ripplesecurity.com.au/blogs/news/ev1527-and-ask-explained-simple
You can sniff the remote with rtl_433:
$ rtl_433 -S all -f 433.9M
rtl_433 version 21.05 (2020-05-09) inputs file rtl_tcp RTL-SDR SoapySDR with TLS
Use -h for usage help and see https://triq.org/ for documentation.
Trying conf file at "rtl_433.conf"...
Trying conf file at "/home/ciajeepdoors/.config/rtl_433/rtl_433.conf"...
Trying conf file at "/usr/local/etc/rtl_433/rtl_433.conf"...
Trying conf file at "/etc/rtl_433/rtl_433.conf"...
Registered 157 out of 186 device decoding protocols [ 1-4 8 11-12 15-17 19-23 25-26 29-36 38-60 63 67-71 73-100 102-105 108-116 119 121 124-128 130-149 151-161 163-168 170-175 177-186 ]
Found Fitipower FC0013 tuner
Exact sample rate is: 250000.000414 Hz
Sample rate set to 250000 S/s.
Tuner gain set to Auto.
Tuned to 433.900MHz.
Allocating 15 zero-copy buffers
baseband_demod_FM: low pass filter for 250000 Hz at cutoff 25000 Hz, 40.0 us
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _
time : 2022-07-15 22:47:11
model : Akhan-100F14 ID (20bit): 0x75ed6
Data (4bit): 0x4 (Mute)
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _
time : 2022-07-15 22:47:11
model : Akhan-100F14 ID (20bit): 0x75ed6
Data (4bit): 0x4 (Mute)
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _
time : 2022-07-15 22:47:11
model : Akhan-100F14 ID (20bit): 0x75ed6
Data (4bit): 0x4 (Mute)
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _
time : 2022-07-15 22:47:11
model : Akhan-100F14 ID (20bit): 0x75ed6
Data (4bit): 0x4 (Mute)
*** Saving signal to file g001_433.9M_250k.cu8 (78818 samples, 262144 bytes)
*** Saving signal to file g002_433.9M_250k.cu8 (35279 samples, 131072 bytes)
*** Saving signal to file g003_433.9M_250k.cu8 (55769 samples, 131072 bytes)
*** Saving signal to file g004_433.9M_250k.cu8 (35280 samples, 131072 bytes)
*** Saving signal to file g005_433.9M_250k.cu8 (35279 samples, 131072 bytes)
*** Saving signal to file g006_433.9M_250k.cu8 (151278 samples, 393216 bytes)
^CSignal caught, exiting!
$ rtl_433 -r g001_433.9M_250k.cu8 -a 4
...
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _
time : @0.415692s
model : Akhan-100F14 ID (20bit): 0x75ed6
Data (4bit): 0x4 (Mute)
*** signal_start = 58652, signal_end = 122183, signal_len = 63531, pulses_found = 101
Iteration 1. t: 145 min: 59 (45) max: 231 (56) delta 18
Iteration 2. t: 145 min: 59 (45) max: 231 (56) delta 0
Pulse coding: Short pulse length 59 - Long pulse length 231
Short distance: 111, long distance: 278, packet distance: 2630
p_limit: 145
bitbuffer:: Number of rows: 5
[00] { 1} 00 : 0
[01] {25} 75 ed 64 00 : 01110101 11101101 01100100 0
[02] {25} 75 ed 64 00 : 01110101 11101101 01100100 0
[03] {25} 75 ed 64 00 : 01110101 11101101 01100100 0
[04] {25} 75 ed 64 00 : 01110101 11101101 01100100 0
Iteration 1. t: 0 min: 0 (0) max: 0 (0) delta 3567587328
Iteration 2. t: 0 min: 0 (0) max: 0 (0) delta 0
Distance coding: Pulse length 0
Short distance: 1000000, long distance: 0, packet distance: 0
p_limit: 0
bitbuffer:: Number of rows: 0
The go1 motion program is automatically triggered after power on. If you want the robot to power on
without triggering the motion program (or don't want the robot to stand up
on its own) you need to do the following:
Access to the robot's pi system, either through ssh or by connecting to a monitor
Access the following paths: ~/Unitree/autostart/triggerSport
The triggersport.sh script file is the trigger program, let's rename it as follows
Reboot
When you turn the robot on again you will find that it will not stand up on its own.
If you want it to go into motion mode (or stand up) you need to press L1+Start on the remote control at the same time
If you accidentally delete /etc/hosts, or remove the "localhost" entry, the dog will not stand.
pi@raspberrypi:~ $ journalctl -u nginx.service
-- Reboot --
Jul 11 11:26:56 raspberrypi systemd[1]: Starting A high performance web server and a reverse proxy server...
Jul 11 11:26:58 raspberrypi nginx[676]: nginx: [emerg] host not found in upstream "localhost" in /etc/nginx/sites-enabled/default:11
Jul 11 11:26:58 raspberrypi nginx[676]: nginx: configuration file /etc/nginx/nginx.conf test failed
Jul 11 11:26:58 raspberrypi systemd[1]: nginx.service: Control process exited, code=exited, status=1/FAILURE
Jul 11 11:26:58 raspberrypi systemd[1]: nginx.service: Failed with result 'exit-code'.
Jul 11 11:26:58 raspberrypi systemd[1]: Failed to start A high performance web server and a reverse proxy server.
-- Reboot --
General errors can be found in /home/pi/.cache/lxsession/LXDE-pi/run.log and /home/pi/.ros/log
You can check the status of the system services for degraded stats with
root@raspberrypi:/home/pi# systemctl status
● raspberrypi
State: degraded
Jobs: 0 queued
Failed: 1 units
...
root@raspberrypi:/home/pi# systemctl
UNIT LOAD ACTIVE SUB DESCRIPTION
...
● nginx.service loaded failed failed A high performance web server and a
reverse proxy server
...
pi@raspberrypi:~ $ systemctl list-units --failed
UNIT LOAD ACTIVE SUB DESCRIPTION
● nginx.service loaded failed failed A high performance web server and a reverse proxy server
The full product matrix is not fully understood, but there appears to be regional sub variants that are only sold in certain countries. For example the "Go1 MAX" is supposed to be China exclusive, although it can be easily obtained "cross-border". Test report details have given the current understanding of product options.
https://www.taobao.com/list/item/657740636451.htm Early Black variant of the Air?
https://www.cnbeta.com/articles/tech/1139381.htm
unknown
unknown
https://www.taobao.com/list/item/667863152779.htm
When upgrading to the 2D or 3D LiDAR versions of the GO1 EDU, one of the three Jetson Nanos is upgraded to a Jetson Xavier NX. As a result, the robot is capable of dynamic obstacle avoidance, navigation planning, map building, self-positioning and more. This also supports your ability to develop gesture recognition, VSLAM, deep learning, machine learning, etc.
2D LiDAR Upgrade (Plus)
3D LiDAR Upgrade (Explorer)
The difference between the EDU and the EDU Explorer is basically those features that comes with the integration of the Lidar (2D/3D):
Basically