MTLab / rsgunet_image_enhance

Champion solution of the PIRM2018 Challenge on Perceptual Image Enhancement on Smartphones (Track B: Image Enhancement)
http://openaccess.thecvf.com/content_ECCVW_2018/papers/11133/Huang_Range_Scaling_Global_U-Net_for_Perceptual_Image_Enhancement_on_Mobile_ECCVW_2018_paper.pdf
MIT License
120 stars 31 forks source link

Team: Mt.Phoenix (1st place)

How to use the code:

  1. Use a checkpoint file to save your model and a dataset file to place your dataset.
  2. Use a pre-trained vgg model which can be found on the https://drive.google.com/file/d/0BwOLOmqkYj-jMGRwaUR2UjhSNDQ/view?usp=sharing
  3. To train the model you just need run the squid/train.py.

Please cite our paper:

@InProceedings{RSGUNet2018,
author = {J. Huang and P. Zhu and M. Geng and J. Ran and X. Zhou and C. Xing and P. Wan and X. Ji},
title={Range Scaling Global U-Net for Perceptual Image Enhancement on Mobile Devices},
booktitle={European Conference on Computer Vision Workshops},
year={2018},
}