Python API and helper script (mwa_client) to interact with the MWA ASVO.
Giant Squid is the preferred CLI client for the MWA ASVO- check it out here Giant Squid
For general help on using the MWA ASVO, please visit: MWA ASVO wiki.
NOTE FOR HPC USERS
Please read this wiki article if you are running manta-ray-client on HPC systems.
mwa_client is a helper script which provides the following functions:
There are three types of MWA ASVO jobs:
You must have an account on the MWA ASVO website
Set your API key as an environment variables in linux (usually in your profile / .bashrc). You can get your API key from Your Profile page on the MWA ASVO website.
~$ export MWA_ASVO_API_KEY=<api key>
Then you may install natively on your computer OR install via Docker.
~$ git clone https://github.com/ICRAR/manta-ray-client.git
python3 -m venv env
or if you are still using python2.7 you will need to use virtualenv (See Setting up Python, Pip, and Virtualenv (external link) for information on installing virtualenv)
~$ virtualenv -p /usr/bin/python2.7 env
~$ source env/bin/activate
(env)~$
(env)~$ cd manta-ray-client
(env)~/manta-ray-client$ pip3 install -r requirements.txt
(env)~/manta-ray-client$ python3 setup.py install
If you prefer, you can also run the manta-ray-client as a Docker container instead of installing it locally. This assumes you have docker installed on your machine. If not please see the Get Docker (external link) page for instructions.
~$ git clone https://github.com/mwatelescope/manta-ray-client.git
~$ cd manta-ray-client
~/manta-ray-client$ docker build --tag manta-ray-client:latest .
Once the image is built, you can run the mwa_client directly. The below command will:
~$ docker run --name my_mwa_client --entrypoint="" --volume=/your/host/data/path/:/data --rm=true -e MWA_ASVO_API_KEY manta-ray-client:latest mwa_client -w all -d /data
Or you can open a shell within the container itself and then run as many mwa_client commands as you like, interactively, then exit to leave the container:
~$ docker run -it --name my_mwa_client --entrypoint="" --volume=/your/host/data/path/:/data --rm=true -e MWA_ASVO_API_KEY manta-ray-client:latest /bin/bash
root@c197566f86d9:/# mwa_client -l
...
root@c197566f86d9:/# exit
~$
You will get a prompt like the one above and from there you can run mwa_client commands as normal.
mwa_client -c csvfile -d destdir Submit jobs in the csv file, monitor them, then download the files, then exit
mwa_client -c csvfile -s Submit jobs in the csv file, then exit
mwa_client -d destdir -w JOBID Download the job id (assuming it is ready to download), then exit
mwa_client -d destdir -w all Download any ready to download jobs, then exit
mwa_client -d destdir -w all -e error_file Download any ready to download jobs, then exit, writing any errors to error_file
mwa_client -l List all of your jobs and their status, then exit
optional arguments:
-h, --help Show this help message and exit
-s, --submit-only Submit job(s) from csv file then exit (-d is ignored)
-l, --list-only List the user's active job(s) and exit immediately
(-s, -c & -d are ignored)
-w DOWNLOAD_JOB_ID, --download-only DOWNLOAD_JOB_ID
Download the job id (-w DOWNLOAD_JOB_ID), if it is ready;
or all downloadable jobs (-w all | -w 0), then exit (-s, -c & -l are ignored)
-c FILE, --csv FILE csv job file
-d DIR, --dir DIR Download directory
-e ERRFILE, --error-file ERRFILE, --errfile ERRFILE
Write errors in json format to an error file
-v, --verbose Verbose output
-ar, --allow-resubmit Will allow a job with the same parameters and an existing job in your queue in Completed, Error or Cancelled status to be resubmitted. Default is to not allow resubmission if the new job matches the parameters of an existing job in your queue.
Each job submitted will transition through the following states:
Users can submit multiple jobs using a CSV file (see below for instructions).
Each row is a single job and each CSV element must be a key=value pair. Whitespace (blank rows) and comments (lines beginning with #) are allowed. Please see the included example.csv for several full working examples.
Please note that some options are only available depending on the choice of preprocessor (explained below).
obs_id: <integer>
job_type: c
avg_time_res: <decimal>
avg_freq_res: <integer>
flag_edge_width: <integer>
output: <ms || uvfits>
ms
: CASA measurement set.uvfits
: uvfits output.delivery: <acacia || astro || scratch>
acacia (default)
: Data will be delivered to Pawsey's Acacia system and you will receive a link to download a zip file containing the data.astro
: Data will be left on the /astro file system at Pawsey in /astro/\scratch
: Data will be left on the /scratch file system at Pawsey in /scratch/\no_rfi=true
no_rfi=false
.Birli currently supports the options below. For more info on the Birli preprocessor, please visit the repository. Any other flags passed will be ignored.
no_rfi=true
Do not perform RFI detection.no_geometric_delay=true
Disable geometric corrections.no_cable_delay=true
Disable cable length corrections.no_digital_gains=true
Do not correct for the digital gains.no_passband_gains=true
Apply unity passband (i.e. do not apply any passband corrections).no_flag_dc=true
Do not flag the centre/DC channel of each coarse channel.apply_di_cal=true
Apply a rough calibration solution to the dataset, if found. If not found, the job will fail- in this case you can resubmit the job without this option for uncalibrated raw visibilities. See: Data Access/MWA ASVO Calibration Option on the MWA Telescope Wiki for more information.If the centre
options is omitted, the job will default to using the observations phase centre.
centre=phase || pointing || custom
phase
Centre on the observations phase centrepointing
Centre on the observations pointing centrecustom
Centre on a custom phase centre. If this option is specified, two additional parameters must be passed:phase_centre_ra: <ra formatted as: 0.0 deg>
ICRS (J2000.0). Centre on a custom phase centre with this decimal right ascension (must include phase_centre_dec).phase_centre_dec: <dec formatted as: +00.0 deg>
ICRS (J2000.0). Centre on a custom phase centre with this decimal declination (must include phase_centre_ra).centre=custom,phase_centre_ra=123.23,phase_centre_dec=-20.1
obs_id=1110103576, job_type=c, avg_time_res=8, avg_freq_res=40, flag_edge_width=80, output=ms, apply_di_cal=true, no_rfi=true
obs_id: <integer>
job_type: d
download_type: <vis_meta || vis>
vis_meta
: download visibility metadata only (metafits and RFI flags).vis
: download raw visibility data sets and metadata (raw visibility files, metafits and RFI flags).delivery: <acacia || astro || scratch>
acacia
: Data will be delivered to Pawsey's Acacia system and you will receive a link to download a zip file containing the data.astro
: Data will be left on the /astro file system at Pawsey in /astro/\scratch
: Data will be left on the /scratch file system at Pawsey in /scratch/\obs_id=1110103576, job_type=d, download_type=vis, delivery=acacia
obs_id=1110105120, job_type=d, download_type=vis_meta, delivery=astro
obs_id=1110105120, job_type=d, download_type=vis_meta, delivery=scratch
Note that voltage jobs will always be left on /astro or /scratch, and you will therefore need a Pawsey account to submit them. Please get in contact if you're interested in accessing VCS data.
obs_id: <integer>
job_type: v
offset: <integer>
duration: <integer>
obs_id=1323776840, job_type=v, offset=0, duration=1200
You can get a machine readable error file in JSON format by specifying "-e" | "--error-file" | "--errfile" on the command line. This might be useful if you are trying to automate the download and processing of many observations and you don't want to try and parse the human readable standard output.
An example of the format is below, with two jobs with errors:
[
{
"obs_id": "1216295963",
"job_id": 28979,
"result": "Error: an error message"
},
{
"obs_id": "1216298341",
"job_id": 28980,
"result": "Error: some error message"
}
]
Since this is JSON, in python you could simply use the below code to iterate through any errors by deserialising the JSON string:
import json
# Open the error file mwa_client produced when using -e
with open("error.txt", "r") as f:
# Read the JSON from the file into a string
json_string = f.read()
# Deserialise the JSON into a python list of objects
result_list = json.loads(json_string)
# Iterate through all of the errors
for r in result_list:
print("Job:{0} ObsId:{1} Result:{2}", r['job_id'], r['obs_id'], r['result'])