MahmoudAshraf97 / ctc-forced-aligner

Text to speech alignment using CTC forced alignment
133 stars 27 forks source link
forced-alignment

Forced Alignment with Hugging Face CTC Models

Build Status GitHub stars GitHub issues GitHub license Twitter

drawing Please, star the project on github (see top-right corner) if you appreciate my contribution to the community!

This Python package provides an efficient way to perform forced alignment between text and audio using Hugging Face's pretrained models. It leverages the power of Wav2Vec2, HuBERT, and MMS models for accurate alignment, making it a powerful tool for creating speech corpuses.

Features

Installation

pip install git+https://github.com/MahmoudAshraf97/ctc-forced-aligner.git

Usage

ctc-forced-aligner --audio_path "path/to/audio.wav" --text_path "path/to/text.txt" --language "eng" --romanize
Terminal Usage ### Arguments | Argument | Description | Default | |---|---|---| | `--audio_path` | Path to the audio file | Required | | `--text_path` | Path to the text file | Required | | `--language` | Language in ISO 639-3 code | Required | | `--romanize` | Enable romanization for non-latin scripts or for multilingual models regardless of the language, required when using the default model| False | | `--split_size` | Alignment granularity: "sentence", "word", or "char" | "word" | | `--star_frequency` | Frequency of `` token: "segment" or "edges" | "edges" | | `--merge_threshold` | Merge threshold for segment merging | 0.00 | | `--alignment_model` | Name of the alignment model | [MahmoudAshraf/mms-300m-1130-forced-aligner](https://huggingface.co/MahmoudAshraf/mms-300m-1130-forced-aligner) | | `--compute_dtype` | Compute dtype for inference | "float32" | | `--batch_size` | Batch size for inference | 4 | | `--window_size` | Window size in seconds for audio chunking | 30 | | `--context_size` | Overlap between chunks in seconds | 2 | | `--attn_implementation` | Attention implementation | "eager" | | `--device` | Device to use for inference: "cuda" or "cpu" | "cuda" if available, else "cpu" | ### Examples ```bash # Align an English audio file with the text file ctc-forced-aligner --audio_path "english_audio.wav" --text_path "english_text.txt" --language "eng" --romanize # Align a Russian audio file with romanized text ctc-forced-aligner --audio_path "russian_audio.wav" --text_path "russian_text.txt" --language "rus" --romanize # Align on a sentence level ctc-forced-aligner --audio_path "audio.wav" --text_path "text.txt" --language "eng" --split_size "sentence" --romanize # Align using a model with native vocabulary ctc-forced-aligner --audio_path "audio.wav" --text_path "text.txt" --language "ara" --alignment_model "jonatasgrosman/wav2vec2-large-xlsr-53-arabic" ```
Python Usage ### Python Usage ```python import torch from ctc_forced_aligner import ( load_audio, load_alignment_model, generate_emissions, preprocess_text, get_alignments, get_spans, postprocess_results, ) audio_path = "your/audio/path" text_path = "your/text/path" language = "iso" # ISO-639-3 Language code device = "cuda" if torch.cuda.is_available() else "cpu" batch_size = 16 alignment_model, alignment_tokenizer = load_alignment_model( device, dtype=torch.float16 if device == "cuda" else torch.float32, ) audio_waveform = load_audio(audio_path, alignment_model.dtype, alignment_model.device) with open(text_path, "r") as f: lines = f.readlines() text = "".join(line for line in lines).replace("\n", " ").strip() emissions, stride = generate_emissions( alignment_model, audio_waveform, batch_size=batch_size ) tokens_starred, text_starred = preprocess_text( text, romanize=True, language=language, ) segments, scores, blank_token = get_alignments( emissions, tokens_starred, alignment_tokenizer, ) spans = get_spans(tokens_starred, segments, blank_token) word_timestamps = postprocess_results(text_starred, spans, stride, scores) ```

Output

The alignment results will be saved to a file containing the following information in JSON format:

{
  "text": "This is a sample text to be aligned with the audio.",
  "segments": [
    {
      "start": 0.000,
      "end": 1.234,
      "text": "This"
    },
    {
      "start": 1.234,
      "end": 2.567,
      "text": "is"
    },
    {
      "start": 2.567,
      "end": 3.890,
      "text": "a"
    },
    {
      "start": 3.890,
      "end": 5.213,
      "text": "sample"
    },
    {
      "start": 5.213,
      "end": 6.536,
      "text": "text"
    },
    {
      "start": 6.536,
      "end": 7.859,
      "text": "to"
    },
    {
      "start": 7.859,
      "end": 9.182,
      "text": "be"
    },
    {
      "start": 9.182,
      "end": 10.405,
      "text": "aligned"
    },
    {
      "start": 10.405,
      "end": 11.728,
      "text": "with"
    },
    {
      "start": 11.728,
      "end": 13.051,
      "text": "the"
    },
    {
      "start": 13.051,
      "end": 14.374,
      "text": "audio."
    }
  ]
}

Contributing

Contributions are welcome! Please feel free to open an issue or submit a pull request.

License

This project is licensed under the BSD License, note that the default model has CC-BY-NC 4.0 License, so make sure to use a different model for commercial usage.

Acknowledgements

This project is based on the work of FAIR MMS team.