Mars Raw Utils (MRU) is a set of utilities for the retrieval, calibration, and manipulation of publically available raw Mars surface mission imagery. It is not meant or intended to work with or produce full comprehensive science products (that is left to the NASA Planetary Data System and traditional image processing toolsets), instead provide tools for the enthusiast and "Citizen Scientist" communities to streamline, standardize, and teach the operations generally used for flight mission image processing.
MRU supports three flight missions currently or recently in operation on the ground on Mars. Data is sourced from the NASA Raw Image browse web services that are otherwise available in the web browser.
Supported Missions and Data Sources:
Supported Mission and Camera SIS documents
Though not comprehensive, MRU aims to provide image calibration with the goal of achieving an output as close as possible to the full science data. The primary limitation being that prior to becoming available online, most images are converted to web-friendly formats that involve downscaling, lossy compression, and other changes that result in a loss of data precision.
Currently supported camera instruments and primary calibration functions:
Mission | Camera | Decompand | Debayer | Inpaint | Flats | HPC* |
---|---|---|---|---|---|---|
MSL | MastCam | ☑ | ☑ | |||
MSL | MAHLI | ☑ | ☑ | ☑ | ☑ | |
MSL | NavCam** | ☑ | ☑ | ☑ | ||
MSL | Rear Haz | ☑ | ☑ | ☑ | ||
MSL | Front Haz | ☑ | ☑ | ☑ | ||
MSL | ChemCam RMI | ☑ | ||||
Mars2020 | Mastcam-Z | ☑ | ☑ | ☑ | ☑ | |
Mars2020 | NavCam | ☑ | ☑ | ☑ | ||
Mars2020 | Rear Haz | ☑ | ☑ | ☑ | ||
Mars2020 | Front Haz | ☑ | ☑ | ☑ | ||
Mars2020 | Watson | ☑ | ☑ | ☑ | ☑ | |
Mars2020 | SuperCam | ☑ | ☑ | ☑ | ||
Mars2020 | PIXL MCC | ☑ | ||||
Mars2020 | SkyCam | ☑ | ☑ | |||
Mars2020 | SHERLOC ACI | ☑ | ||||
Mars2020 | RDCAM | ☑ | ☑ | |||
Ingenuity | Nav | ☑ | ||||
Ingenuity | Color | ☑ | ||||
InSight | IDC | ☑ | ☑ | |||
InSight | ICC | ☑ | ☑ |
* Hot pixel detection and correction
** For the purposes of this project, the cameras on MSL RCE-A have been ignored as the mission is very unlikely to return to that computer.
Additional instruments will be implemented more or less whenever I get to them.
Check out the wiki for some quick start topics: https://github.com/MarsRaw/mars-raw-utils/wiki
Feedback, issues, and contributions are always welcomed. Should enough interest arise in contributing development efforts, I will write up a contribution guide.
For developers, the primary project structure is as follows:
./crate - Project root
├── bin - Main executable and subcommands
├── doc - Documentation resources
├── docker - Docker resources
├── examples - Example usage scripts
├── mars-raw-utils-data - Main calibration data (git submodule)
├── src - Main library source code
│ ├── caldata - Calibration update and loading
│ ├── m20 - Code specific to Mars2020 mission
│ ├── mer - Code specific to the MER mission
│ ├── msl - Code specific to the MSL mission
│ ╰── nsyt - Code specific to the InSight mission
╰── tests - Tests
Citing MRU is not required, but if the software has significantly contributed to your research or if you'd like to acknowledge the project in your works, I would be grateful if you did so.
A working Rust (https://www.rust-lang.org/) installation is required for building. MRU targets the 2021 edition, stable branch.
MRU is build and tested on Linux (Fedora, Ubuntu, Kubuntu), MacOS, and Windows (natively and WSL2.0)
To build successfully on Linux, you'll likely need the following packages installed via apt:
libssl-dev
(Ubuntu)openssl-devel
(RHEL, CentOS, Fedora)git clone git@github.com:kmgill/mars-raw-utils.git
cd mars-raw-utils/
This is the easiest installation method for *nix-based systems, though it does require a working installation of the Rust toolchain. While the software does build and run natively on Windows, it is recommended to be used within a Ubuntu container on the Windows Subsystem for Linux.
cargo install --path .
mkdir ~/.marsdata
cp mars-raw-utils-data/caldata/* ~/.marsdata
NOTE: You can set $MARS_RAW_DATA
in ~/.bash_profile
if a custom data directory is required.
Download the pre-built deb file from the project page.
sudo apt install ./mars_raw_utils_0.7.0_amd64.deb
NOTE: Adjust the output debian package filename to what is output by the build.
Download the pre-built rpm file from the project page.
rpm -ivh mars_raw_utils-0.7.0-1.x86_64.rpm
NOTE: Adjust the output rpm package filename to what is created by build.
brew tap kmgill/homebrew-mars-raw-utils
brew install marsrawutils
A prebuilt docker image is available for use:
docker pull kevinmgill/mars_raw_utils:latest
However, the container can also be built locally:
sh dockerbuild.sh
Install packages for MRU are currently built within Docker containers and are kicked off thusly:
# Fedora / Red Hat:
sh dockerbuild-fedora.sh
# Debian / Ubuntu:
sh dockerbuild-debian.sh
Build outputs will be placed into the target
directory.
MRU uses the Strump library (https://github.com/MarsRaw/stump) for logging. By default, MRU it set up to write any major errors to the console. This can be modified by setting the environment variable MARS_LOG_AT_LEVEL
to one of error
, warn
, info
, or debug
.
By default, if the software is installed using the .deb file in Debian/Ubuntu, the calibration files will be located in /usr/share/mars_raw_utils/data/
. In Homebrew on MacOS, they will be located in /usr/local/share/mars_raw_utils/data/
. For installations using cargo install --path .
or custom installations, you can use the default ~/.marsdata
or set the calibration file directory by using the $MARS_RAW_DATA
environment variable. The variable will override the default locations (if installed via apt or rpm), as well.
Once MRU is installed, or if a update is available, the calibration files can be updated by running::
mru update-cal-data
Calibration files are used to specify commonly used parameters for the various instruments and output product types. The files are in toml format and if not specified by their absolute path, need to be discoverable in a known calibration folder.
An example profile
calfiletype = "profile"
apply_ilt = true
red_scalar = 1.0
green_scalar = 0.96
blue_scalar = 1.2095
color_noise_reduction = false
color_noise_reduction_amount = 0
hot_pixel_detection_threshold = 0
filename_suffix = "rjcal-dcc"
decorrelate_color = true
mission = "Mars2020"
instrument = "WATSON"
description = "Applies color decorrelation to RAD calibrated images"
List profiles by running
mru profile -l
You can ask MRU to describe a profile by running, for example:
mru profile -p msl_mcam_rad
Mission: MSL
Instrument: MASTCAM
Description: Calibration steps through to radiometric correction for MSL MastCam
Apply Decompanding: true
Red Scalar: 0.965
Green Scalar: 0.985
Blue Scalar: 1.155
Apply Color Noise Reduction: false
Apply Hot Pixel Correction: false
Output Filename Suffix: rjcal-rad
Images posted to the NASA raw image pages are derived from what are known as Experimental Data Records (EDR). Not having gone through the ground pipelines, these images are raw and unprocessed. Further, the images have had various levels of compression applied to make them easier to serve on a website.
This tool provides a way to apply some of the steps required to generate a calibrated data product. Given the compression applied, it is impossible to produce a completely calibrated image on par with those in JPL's internal systems or the planetary data system. However, this best-effort calibration tool was developed to provide products suitable for image processing enthusiasts and some limited utility for researchers.
A note on radiometric and photometric calibration: Due to the nature of the public images and limited telemetry (temperature, tau, time, pointing, etc) available, full and proper radiometric calibration is presently not possible. MRU does have the means of setting per-channel mulipliers which simulate radiometric correction, however this is not a full solution.
This tool uses associated metadata to identify the calibration routine required for a given mission and instrument (see list of supported instruments above). A such, this is the single subcommand for calibration.
To execute the default calibration on a set of images (modify input expression as required):
mru calibrate -i *jpg
To calibrate a set of images and apply a specific calibration profile, in this case msl_mcam_rad
, run:
mru calibrate -i *jpg -P msl_mcam_rad
Usage: mru calibrate [OPTIONS]
Options:
-i, --input-files <INPUT_FILES>...
Input raw images
-I, --instrument <INSTRUMENT>
Force instrument
-R, --red-weight <RED_WEIGHT>
Red weight
-G, --green-weight <GREEN_WEIGHT>
Green weight
-B, --blue-weight <BLUE_WEIGHT>
Blue weight
-r, --raw
Raw color, skip ILT
-c, --color-noise-reduction-amount <COLOR_NOISE_REDUCTION_AMOUNT>
Color noise reduction amount
-t, --hpc-threshold <HPC_THRESHOLD>
HPC threshold
-w, --hpc-window <HPC_WINDOW>
HPC window size
-d, --decorrelate
Decorrelate color channels
-P, --profile <PROFILE>...
Calibration profile
-D, --debayer <DEBAYER>
Debayer method (malvar, amaze)
-C, --srgb-color-correction
Apply sRGB color correction
-S, --no-subframing
Skip auto subframing (cropping) of output images
-h, --help
Print help
-V, --version
Print version
This tool fetches images from the public raw image website at https://mars.nasa.gov/msl/multimedia/raw-images/
USAGE:
mru msl-fetch [OPTIONS]
OPTIONS:
-c, --camera <CAMERA>... MSL Camera Instrument(s)
-h, --help Print help information
-I, --instruments List instruments
-l, --list Don't download, only list results
-m, --minsol <MINSOL> Starting Mission Sol
-M, --maxsol <MAXSOL> Ending Mission Sol
-n, --new Only new images. Skipped processed images.
-N, --num <NUM> Max number of results
-o, --output <OUTPUT> Output directory
-p, --page <PAGE> Results page (starts at 1)
-s, --sol <SOL> Mission Sol
-S, --seqid <SEQID> Sequence ID
-t, --thumbnails Download thumbnails in the results
-V, --version Print version information
Top level idenfiers include those in the sublevels.
Show available instruments:
mru msl-fetch -I
List what's available for Mastcam on sol 3113: (remove the -l
to download the images)
mru msl-fetch -c MASTCAM -s 3113 -l
List what's available for NAV_RIGHT between sols 3110 and 3112: (remove the -l
to download the images)
mru msl-fetch -c NAV_RIGHT -m 3110 -M 3112 -l
Download NAV_RIGHT during sols 3110 through 3112, filtering for sequence id NCAM00595:
mru msl-fetch -c NAV_RIGHT -m 3110 -M 3112 -S NCAM00595
This tool fetches images from the public raw image website at https://mars.nasa.gov/mars2020/multimedia/raw-images/
USAGE:
mru m20-fetch [OPTIONS]
OPTIONS:
-c, --camera <CAMERA>... Mars2020 Camera Instrument(s)
-e, --movie Only movie frames
-h, --help Print help information
-I, --instruments List instruments
-l, --list Don't download, only list results
-m, --minsol <MINSOL> Starting Mission Sol
-M, --maxsol <MAXSOL> Ending Mission Sol
-n, --new Only new images. Skipped processed images.
-N, --num <NUM> Max number of results
-o, --output <OUTPUT> Output directory
-p, --page <PAGE> Results page (starts at 1)
-s, --sol <SOL> Mission Sol
-S, --seqid <SEQID> Sequence ID
-t, --thumbnails Download thumbnails in the results
-V, --version Print version information
Top level idenfiers include those in the sublevels.
This tool fetches images from the public raw image website at https://mars.nasa.gov/insight/multimedia/raw-images/
NOTE: The InSight mission has come to an end. Because of this, no new images will be appearing on the raw image website beyond what it already there.
USAGE:
mru nsyt-fetch [OPTIONS]
OPTIONS:
-c, --camera <CAMERA>... InSight Camera Instrument(s)
-h, --help Print help information
-I, --instruments List instruments
-l, --list Don't download, only list results
-m, --minsol <MINSOL> Starting Mission Sol
-M, --maxsol <MAXSOL> Ending Mission Sol
-n, --new Only new images. Skipped processed images.
-N, --num <NUM> Max number of results
-o, --output <OUTPUT> Output directory
-p, --page <PAGE> Results page (starts at 1)
-s, --sol <SOL> Mission Sol
-S, --seqid <SEQID> Sequence ID
-t, --thumbnails Download thumbnails in the results
-V, --version Print version information
Generate a red/blue anaglyph from a matching stereo pair.
Usage: mru anaglyph [OPTIONS] --left <LEFT> --right <RIGHT> --output <OUTPUT>
Options:
-l, --left <LEFT> Left image
-r, --right <RIGHT> Right image
-o, --output <OUTPUT> Output image
-m, --mono Monochrome color (before converting to red/blue)
-h, --help Print help
-V, --version Print version
Generate an analyph from a sol 3931 ENV sequence stereo pair:
mru msl-fetch -c NAV_RIGHT NAV_LEFT -s 3931 -f NCAM00593
mru calibrate -i /data/MSL/3931/NCAM/NLB_746463314EDR_S1031742NCAM00593M_.JPG /data/MSL/3931/NCAM/NRB_746463314EDR_S1031742NCAM00593M_.JPG
mru anaglyph -l /data/MSL/3931/NCAM/NLB_746463314EDR_S1031742NCAM00593M_-rjcal.tif -r /data/MSL/3931/NCAM/NRB_746463314EDR_S1031742NCAM00593M_-rjcal.tif -o MSL_NCAM_3931_anaglyph_1.tif
Output:
Attempt at hot pixel detection and removal.
Method:
For each pixel (excluding image border pixels):
Usage: mru hpc-filter [OPTIONS]
Options:
-i, --input-files <INPUT_FILES>... Input images
-t, --threshold <THRESHOLD> HPC threshold
-w, --window <WINDOW> HPC window size
-h, --help Print help
-V, --version Print version
Applies a basic inpainting filter on a set of input images. Inpainting regions need to be marked in red (rgb 255, 0, 0).
Usage: mru inpaint [OPTIONS]
Options:
-i, --input-files <INPUT_FILES>... Input images
-h, --help Print help
-V, --version Print version
USAGE:
mru crop [OPTIONS] --crop <CROP>
OPTIONS:
-c, --crop <CROP> Crop as x,y,width,height
-h, --help Print help information
-i, --input-files <INPUT_FILES>... Input images
-V, --version Print version information
Crop an input image at the top left pixel at 100x480 and of width and height of 590x500:
mru crop -i ZR0_0897_0746567432_598ECM_N0440820ZCAM08906_1100LMJ01-rjcal-drcx.tif -c 100,480,590,500
Apply Malvar or Amaze Demosaicking (Debayer) on a grayscale bayer-pattern image. Optionally apply a color noise reduction.
Usage: mru debayer [OPTIONS]
Options:
-i, --input-files <INPUT_FILES>... Input images
-D, --debayer <DEBAYER> Debayer method (malvar, amaze)
-h, --help Print help
-V, --version Print version Print version information
Debayer a directory of jpeg images using the Amaze algorithm:
mru debayer -i *jpg -D amaze
Apply levels adjustments to an image. Analogous to 'Levels' in Photoshop or GIMP.
Usage: mru levels [OPTIONS]
Options:
-i, --input-files <INPUT_FILES>... Input images
-b, --black <BLACK> Black level
-w, --white <WHITE> White level
-g, --gamma <GAMMA> Gamma level
-h, --help Print help
-V, --version Print version
Calculates a per-frame differential from a mean across a series of images. Intended for use with MSL and Mars2020 dust devil movies and sky surveys. Optional options are for contrast enhancement through Photoshop-like black level, white level, and gamma.
Usage: mru diffgif [OPTIONS] --output <OUTPUT>
Options:
-i, --input-files <INPUT_FILES>... Input images
-b, --black <BLACK> Black level
-w, --white <WHITE> White level
-g, --gamma <GAMMA> Gamma level
-d, --delay <DELAY> Interframe delay in increments of 10ms
-l, --lowpass <LOWPASS> Lowpass window size
-o, --output <OUTPUT> Output image
-p, --prodtype <PRODTYPE> Product type
-m, --mono Convert RGB to mono
-L, --lightonly Light only, discard dark values
-h, --help Print help
-V, --version Print version
mru msl-fetch -c NAV_RIGHT_B -s 3372 -f NCAM00595
mru calibrate -i *JPG -t 2.0
mru diffgif -i *NCAM00595*-rjcal.tif -o DustDevilMovie_Sol3372.gif -b 0 -w 2.0 -g 2.5 -l 5 -d 20
Output:
mru msl-fetch -c NAV_RIGHT -s 3325
mru calibrate -i *JPG -t 2.0
mru diffgif -i *NCAM00556*-rjcal.tif -o CloudShadow_3325.gif -b 0 -w 1.0 -g 2.5 -l 5 -d 20
mru msl-fetch -c NAV_RIGHT -s 3325
mru calibrate -i *JPG -t 2.0
mru diffgif -i *NCAM00551*-rjcal.tif -o CloudZenith_3325.gif -b 0 -w 3.0 -g 1.0 -l 5 -d 20
Fetches information as to the latest updated sols.
Example Output:
$ mru msl-latest
Latest data: 2022-02-23T18:30:03Z
Latest sol: 3395
Latest sols: [3365, 3374, 3376, 3378, 3390, 3393, 3394, 3395]
New Count: 364
Sol Count: 225
Total: 894201
$ mru m20-latest
Latest data: 2022-02-23T10:22:33Z
Latest sol: 359
Latest sols: [349]
New Count: 270
Sol Count: 99
Total: 217981
$ mru nsyt-latest
Latest data: 2022-02-14T15:11:15Z
Latest sol: 1144
Latest sols: [1144]
New Count: 2
Sol Count: 2
Total: 6353
Mission time and sol are available for MSL, Mars2020, InSight, and the Mars Exploration Rovers via msl_date
, m20_date
, nsyt_date
, and mer-date
respectively.
Currently, the output provides valules for the Mars Sol Date, coordinated Mars time, mission sol, mission time (LMST/HLST), local true color time, and areocentric solar longitude. The algorithm used for the calculation is based on James Tauber's marsclock.com and is exposed via time::get_time(sol_offset:f64, longitude:f64, time_system:time::TimeSystem)
.
Example Output:
$ mru msl-date
Mars Sol Date: 52391.26879394437
Coordinated Mars Time: 06:27:03.797
Mission Sol: 3122
Mission Time: 15:36:49.805 LMST
Local True Solar Time: 15:29:37.673 LTST
Solar Longitude: 47.04093399663567
$ mru m20-date
Mars Sol Date: 52391.270293050664
Coordinated Mars Time: 06:29:13.320
Mission Sol: 87
Mission Time: 11:38:56.520 LMST
Local True Solar Time: 11:31:44.417 LTST
Solar Longitude: 47.04161842268443
$ mru nsyt-date
Mars Sol Date: 52391.27048977531
Coordinated Mars Time: 06:29:30.317
Mission Sol: 880
Mission Time: 15:31:59.933 LMST
Local True Solar Time: 15:24:47.833 LTST
Solar Longitude: 47.041708238462114
$ mru mer-date
MER-A / Spirit:
Mars Sol Date: 52818.42509854407
Coordinated Mars Time: 10:12:08.514
Mission Sol: 6602
Mission Time: 10:12:08.514 LMST
Local True Solar Time: 09:52:00.678 LTST
Solar Longitude: 276.7135713289173
-----------------------------------------------
MER-B / Opportunity:
Mars Sol Date: 52818.42509854497
Coordinated Mars Time: 10:12:08.514
Mission Sol: 6583
Mission Time: 09:11:02.476 LMST
Local True Solar Time: 08:50:54.640 LTST
Solar Longitude: 276.7135713294991
A tool for focus stacking a series of images taken on the same scene but at different focal distances with the intent of simulating a greater depth of field. This is commonly done with MSL MAHLI (usually stacked on-board the rover then downlinked with an derived depth map).
The tool takes an input of 2+ images and an output location. An optional parameter allows for tuning the window size when determining the quality sigma value (default: 15).
Usage: mru focus-merge [OPTIONS] --output <OUTPUT>
Options:
-i, --input-files <INPUT_FILES>... Input images
-o, --output <OUTPUT> Output image
-w, --window <WINDOW> Quality determination window size (pixels)
-d, --depth-map Produce a depth map
-h, --help Print help
-V, --version Print version
This provides the capability for MRU to produce cross-eye/parallel-eye 3D stereograms.
Usage: mru xeye [OPTIONS] --left <LEFT> --right <RIGHT> --output <OUTPUT>
Options:
-l, --left <LEFT> Left image
-r, --right <RIGHT> Right image
-o, --output <OUTPUT> Output image
-u, --use-cm Use camera model, if available
-h, --help Print help
-V, --version Print version
Download MAHLI stereo pair from sol 3931, calibrate them, then create a cross-eye stereogram:
mru msl-fetch -c MAHLI -s 3931
mru calibrate -i 3931MH0001700001402361R00_DXXX.jpg 3931MH0001700001402363R00_DXXX.jpg -P msl_mahli_rad
mru xeye -l 3931MH0001700001402363R00_DXXX-rjcal-rad.tif -r 3931MH0001700001402361R00_DXXX-rjcal-rad.tif -o MSL_MAHLI_3931_xeye_1.tif
Output:
Stretches each color band of an image independent of one another to the minimum and maximum values of the bit depth.
Usage: mru decorr [OPTIONS]
Options:
-i, --input-files <INPUT_FILES>... Input images
-c, --cross-file Cross-File decorrelation (value ranges determined across all files rather than individually)
-b, --ignore-black Ignore black values
-h, --help Print help
-V, --version Print version
Example Before (M20 MCZ calibrated with m20_zcam_rad
)
Example After following mru decorr
Retrieve overflight and downlink information from the Mars Relay Network. Information can be filtered by lander (M20
, MSL
), and/or orbiter (MRO
, ODY
, TGO
, MVN
).
Usage: mru passes [OPTIONS]
Options:
-o, --orbiter <ORBITER>... Limit to orbiter(s)
-l, --lander <LANDER>... Limit to lander(s)
-f, --future Limit to future overflights
-h, --help Print help
-V, --version Print version
Retrieve upcoming passes for Curiosity:
mru passes -l MSL -f
+---------------------+---------+--------+-------------------------+--------------+----------+---------+----------+
| ID | Orbiter | Lander | Max El Time | Max El (deg) | Duration | Range | Data Vol |
+---------------------+---------+--------+-------------------------+--------------+----------+---------+----------+
| TGO_MSL_2023_242_03 | TGO | MSL | 2023-08-30 18:20:01 UTC | 33.448813 | 16.566 | 635.226 | 710 |
+---------------------+---------+--------+-------------------------+--------------+----------+---------+----------+
| MRO_MSL_2023_242_02 | MRO | MSL | 2023-08-30 20:40:32 UTC | 72.00407 | 13.5 | 277.561 | 397 |
+---------------------+---------+--------+-------------------------+--------------+----------+---------+----------+
| ODY_MSL_2023_243_02 | ODY | MSL | 2023-08-31 12:13:00 UTC | 70.262318 | 17.316 | 426.163 | 114 |
+---------------------+---------+--------+-------------------------+--------------+----------+---------+----------+
| MRO_MSL_2023_243_03 | MRO | MSL | 2023-08-31 20:59:15 UTC | 30.584128 | 12.933 | 474.955 | 211 |
+---------------------+---------+--------+-------------------------+--------------+----------+---------+----------+
...
Fetches drive, location, and vehicle attitude information. By default, this includes information from the latest reported drive. However, by using the -a
option, MRU will print out all reported site locations since the beginning of the mission (Use -c
for CSV formatting);
Usage: mru msl-location [OPTIONS]
Options:
-a, --all Print all known waypoints
-c, --csv Print CSV format
-h, --help Print help
-V, --version Print version
Current vehicle status:
mru msl-location
Site: 103
Drive: 2216
Sol: 3931
Easting: 8144432.505
Northing: -282950.238
Elevation (geoid): -3777.79
Longitude: 137.4015026
Latitude: -4.77354166
Roll: -10.81
Pitch: 1.8
Yaw: 134.87
Tilt: 10.96
Drive Distance (meters): 64.63
Total Traverse Distance (kilometers): 30.78
Vehicle Location History:
mru msl-location -a
Site Drive Sol Easting Northing Elevation Climb Lon Lat Dist(m) Total (km)
2 0 3 8146811.223 -272039.268 -4500.97 0.00 137.44163 -4.58947 0.00 0.00
3 78 16 8146817.210 -272039.150 -4501.12 -0.15 137.44173 -4.58946 7.01 0.01
3 100 21 8146814.363 -272035.346 -4501.39 -0.27 137.44169 -4.58940 4.90 0.01
3 260 22 8146826.607 -272035.482 -4502.36 -0.98 137.44189 -4.58940 15.14 0.03
3 372 24 8146843.725 -272038.080 -4502.61 -0.25 137.44218 -4.58945 21.51 0.05
3 530 26 8146861.191 -272056.004 -4503.03 -0.41 137.44248 -4.58975 29.79 0.08
4 0 29 8146885.959 -272078.049 -4503.56 -0.53 137.44289 -4.59012 30.56 0.11
4 404 38 8146910.129 -272085.295 -4504.60 -1.05 137.44330 -4.59024 32.35 0.14
4 468 39 8146931.566 -272089.740 -4504.76 -0.15 137.44366 -4.59032 21.70 0.16
4 916 40 8146962.057 -272073.023 -4504.47 0.29 137.44418 -4.59004 37.22 0.20
4 1238 41 8146985.961 -272061.770 -4504.95 -0.49 137.44458 -4.58985 26.89 0.23
...
Usage: mru m20-location [OPTIONS]
Options:
-a, --all Print all known waypoints
-c, --csv Print CSV format
-h, --help Print help
-V, --version Print version
Current vehicle status:
mru m20-location
Site: 44
Drive: 830
Sol: 897
Easting: 4349292.079
Northing: 1095551.419
Elevation (geoid): -2414.699463
Longitude: 77.35836062
Latitude: 18.48261509
Roll: -1.581429204
Pitch: 0.356870366
Yaw: -94.94701482
Tilt: 1.621185506
Drive Distance (meters): 0.047
Total Traverse Distance (kilometers): 19.93
Vehicle Location History:
mru m20-location -a
Site Drive Sol Easting Northing Elevation Climb Lon Lat Dist(m) Total (km)
3 0 13 4354494.086 1093299.695 -2569.91 0.00 77.45089 18.44463 0.00 0.00
3 110 14 4354497.517 1093294.730 -2569.86 0.05 77.45095 18.44454 6.25 0.01
3 386 15 4354502.424 1093329.801 -2569.94 -0.08 77.45103 18.44514 36.39 0.04
3 578 16 4354528.468 1093338.387 -2569.29 0.65 77.45150 18.44528 27.43 0.07
3 770 20 4354548.640 1093330.590 -2568.93 0.36 77.45186 18.44515 23.42 0.09
3 792 23 4354544.202 1093333.786 -2568.97 -0.04 77.45178 18.44520 5.47 0.10
3 828 29 4354546.709 1093331.539 -2568.93 0.04 77.45182 18.44516 3.94 0.10
3 1044 31 4354519.166 1093332.465 -2569.60 -0.67 77.45133 18.44518 33.39 0.14
3 1266 32 4354511.566 1093304.014 -2569.81 -0.21 77.45120 18.44470 30.61 0.17
3 1374 33 4354501.886 1093307.106 -2569.99 -0.18 77.45102 18.44475 12.96 0.18
...
This provides a simple utility for converting archived VICAR images from the Planetary Data System (PDS) into a format readable by MRU.
Usage: mru pds2png [OPTIONS]
Options:
-i, --input-files <INPUT_FILES>... Input images
-m, --min <MIN> Minimum value
-M, --max <MAX> Maximum value
-x, --minmax Prints minimum and maximum values then exit
-h, --help Print help
-V, --version Print version
Download MastCam image from PDS and convert to a usable format:
curl -O https://planetarydata.jpl.nasa.gov/img/data/msl/MSLMST_0028/DATA/RDR/SURFACE/3154/3154ML1002700011203864E01_DRCX.IMG
curl -O https://planetarydata.jpl.nasa.gov/img/data/msl/MSLMST_0028/DATA/RDR/SURFACE/3154/3154ML1002700011203864E01_DRCX.LBL
mru pds2png -i 3154ML1002700011203864E01_DRCX.LBL
The Perseverance Rover's NavCam sensors have a resolution of 5120x3840 pixels, however due to heritage data interface these images must be split into tiles of 1280x960 pixels. These sub-image tiles are then transmitted back to JPL and reassembled by the internal pipelines to the full data product. The public raw images don't receive this reassembly, instead posting the tiles online.
Reassembly of the public raw tiles into the full frame image must take a few things into account. When converted from the internal data format to a PNG, each tile is stretched to within the 8bit data bounds. This stretching results in each tile presenting an altered histogram relative to the others. This needs to be corrected. Additionally, telemetry pixels are added to the borders of each tile which need to be discarded prior to histogram matching.
Assembly of the tiles into the full data frame is done with the m20-ecam-assemble
subcommand. This command takes as input the tiles of a single full frame product (it will not reassemble multiple products at once):
mru -v m20-ecam-assemble -i NLF_0897_0746580073_784ECM_N0440830NCAM03897_??_195J02.png -o NLF_0897_0746580073_784ECM_N0440830NCAM03897_00_195J01.tif
A helper script is available in examples
which automates the reassembly of Navcam images within a directory:
mru m20-fetch -c NAVCAM_LEFT NAVCAM_RIGHT -s 897 -n
assemble_ncams.sh -ncam
mru calibrate -i *assembled.tif -P m20_ncam_mcz
As part of some SHERLOC ACI observations, LEDs on different sides of the camera are used to produce alternate angles of illumination. These alternate lighting angles can be used to create an interesting false-color image when mapped to red and blue. Green can be simulated as a simple mean of the two.
Usage: mru m20-sherloc-colorizer --red <RED> --blue <BLUE> --output <OUTPUT>
Options:
-r, --red <RED> Image for red channel
-b, --blue <BLUE> Image for blue channel
-o, --output <OUTPUT> Output image
-h, --help Print help
-V, --version Print version
mru m20-fetch -c SHERLOC -s 851
mru calibrate -i SC3_0851_0742516884_101ECM_N0410188SRLC10600_0000LMJ01.png SC3_0851_0742516900_691ECM_N0410188SRLC10600_0000LMJ01.png
mru m20-sherloc-colorizer -r SC3_0851_0742516900_691ECM_N0410188SRLC10600_0000LMJ01-rjcal.tif -b SC3_0851_0742516884_101ECM_N0410188SRLC10600_0000LMJ01-rjcal.tif -o M20_SHERLOC_0851_colorized_1.tif
Output Image:
Bell, J. F. et al. (2017), The Mars Science Laboratory Curiosity rover Mastcam instruments: Preflight and in‐flight calibration, validation, and data archiving, Earth and Space Science, 4, 396– 452, doi:10.1002/2016EA000219. https://doi.org/10.1002/2016EA000219
Hayes, A.G., Corlies, P., Tate, C. et al. Pre-Flight Calibration of the Mars 2020 Rover Mastcam Zoom (Mastcam-Z) Multispectral, Stereoscopic Imager. Space Sci Rev 217, 29 (2021). https://doi.org/10.1007/s11214-021-00795-x
Edgett, K.S., Yingst, R.A., Ravine, M.A. et al. Curiosity’s Mars Hand Lens Imager (MAHLI) Investigation. Space Sci Rev 170, 259–317 (2012). https://doi.org/10.1007/s11214-012-9910-4
Edgett, K. S., M. A. Caplinger, J. N. Maki, M. A. Ravine, F. T. Ghaemi, S. McNair, K. E. Herkenhoff, B. M. Duston, R. G. Willson, R. A. Yingst, M. R. Kennedy, M. E. Minitti, A. J. Sengstacken, K. D. Supulver, L. J. Lipkaman, G. M. Krezoski, M. J. McBride, T. L. Jones, B. E. Nixon, J. K. Van Beek, D. J. Krysak, and R. L. Kirk (2015) Curiosity’s robotic arm-mounted Mars Hand Lens Imager (MAHLI): Characterization and calibration status, MSL MAHLI Technical Report 0001 (version 1: 19 June 2015; version 2: 05 October 2015). doi:10.13140/RG.2.1.3798.5447 https://doi.org/10.13140/RG.2.1.3798.5447
Deen, R., Zamani, P., Abarca, H., Maki, J. InSight (NSYT) Software Interface Specification Camera Experiment Data Record (EDR) and Reduced Data Record (RDR) Data Products (version 3.3: 26 June 2019) https://pds-imaging.jpl.nasa.gov/data/nsyt/insight_cameras/document/insight_cameras_sis.pdf
Edgett, Kenneth & Caplinger, Michael & Ravine, Michael. (2019). Mars 2020 Perseverance SHERLOC WATSON Camera Pre-delivery Characterization and Calibration Report. 10.13140/RG.2.2.18447.00165. https://www.researchgate.net/publication/345959204_Mars_2020_Perseverance_SHERLOC_WATSON_Camera_Pre-delivery_Characterization_and_Calibration_Report
Maurice, Sylvestre & Wiens, R. & Mouélic, S. & Anderson, R. & Beyssac, O. & Bonal, L. & Clegg, S. & Deflores, L. & Dromart, G. & Fischer, W. & Forni, O. & Gasnault, O. & Grotzinger, J. & Johnson, Jordanlee & Martínez-Frías, Jesús & Mangold, N. & McLennan, S. & Montmessin, F. & Rull, Fernando & Sharma, Shiv. (2015). The SuperCam Instrument for the Mars2020 Rover. European Planetary Science Congress 2015. 10. https://www.researchgate.net/publication/283271532_The_SuperCam_Instrument_for_the_Mars2020_Rover
J. -M. Reess, Marion Bonafous, L. Lapauw, O. Humeau, T. Fouchet, P. Bernardi, Ph. Cais, M. Deleuze, O. Forni, S. Maurice, S. Robinson, R. C. Wiens, "The SuperCam infrared instrument on the NASA MARS2020 mission: performance and qualification results," Proc. SPIE 11180, International Conference on Space Optics — ICSO 2018, 1118037 (12 July 2019); https://doi.org/10.1117/12.2536034
Wiens, R.C., Maurice, S., Barraclough, B. et al. The ChemCam Instrument Suite on the Mars Science Laboratory (MSL) Rover: Body Unit and Combined System Tests. Space Sci Rev 170, 167–227 (2012). https://doi.org/10.1007/s11214-012-9902-4
O. Gasnault, S. Maurice, R. C. Wiens, S. Le Mouélic, W. W. Fischer, P. Caïs, K. McCabe, J.-M. Reess, and C. Virmontois "SUPERCAM REMOTE MICRO-IMAGER ON MARS 2020." - 46th Lunar and Planetary Science Conference (2015). https://www.hou.usra.edu/meetings/lpsc2015/pdf/2990.pdf
Telea, Alexandru. (2004). An Image Inpainting Technique Based on the Fast Marching Method. Journal of Graphics Tools. 9. 10.1080/10867651.2004.10487596. https://www.researchgate.net/publication/238183352_An_Image_Inpainting_Technique_Based_on_the_Fast_Marching_Method
Malvar, Henrique & He, Li-wei & Cutler, Ross. (2004). High-quality linear interpolation for demosaicing of Bayer-patterned color images. Acoustics, Speech, and Signal Processing, 1988. ICASSP-88., 1988 International Conference on. 3. iii - 485. 10.1109/ICASSP.2004.1326587. https://www.researchgate.net/publication/4087683_High-quality_linear_interpolation_for_demosaicing_of_Bayer-patterned_color_images
Getreuer, Pascal. (2011). Malvar-He-Cutler Linear Image Demosaicking. Image Processing On Line. 1. 10.5201/ipol.2011.g_mhcd. https://www.researchgate.net/publication/270045976_Malvar-He-Cutler_Linear_Image_Demosaicking
Maki, J.N., Gruel, D., McKinney, C. et al. The Mars 2020 Engineering Cameras and Microphone on the Perseverance Rover: A Next-Generation Imaging System for Mars Exploration. Space Sci Rev 216, 137 (2020). https://doi.org/10.1007/s11214-020-00765-9
Malin, M. C., et al. (2017), The Mars Science Laboratory (MSL) Mast cameras and Descent imager: Investigation and instrument descriptions, Earth and Space Science, 4, 506– 539, doi:10.1002/2016EA000252. https://doi.org/10.1002/2016EA000252
Di, K., and Li, R. (2004), CAHVOR camera model and its photogrammetric conversion for planetary applications, J. Geophys. Res., 109, E04004, doi:10.1029/2003JE002199. https://doi.org/10.1029/2003JE002199
Castano, A., Fukunaga, A., Biesiadecki, J. et al. Automatic detection of dust devils and clouds on Mars. Machine Vision and Applications 19, 467–482 (2008). https://doi.org/10.1007/s00138-007-0081-3
Allwood, Abigail C., Joel A. Hurowitz, Benton C. Clark, Luca Cinquini, Scott Davidoff, Robert W. Denise, W. Timothy Elam, et al. "The PIXL Instrument on the Mars 2020 Perseverance Rover." arXiv preprint arXiv:2103.07001 (2021). https://arxiv.org/abs/2103.07001
Gennery, D.B. Generalized Camera Calibration Including Fish-Eye Lenses. Int J Comput Vision 68, 239–266 (2006). https://doi.org/10.1007/s11263-006-5168-1
Fries, M.D., Lee, C., Bhartia, R. et al. The SHERLOC Calibration Target on the Mars 2020 Perseverance Rover: Design, Operations, Outreach, and Future Human Exploration Functions. Space Sci Rev 218, 46 (2022). https://doi.org/10.1007/s11214-022-00907-1