Matesanz / Reinforcement_Learning_Course

Curso de Aprendizaje por Refuerzo, de 0 a 100 con notebooks y slides muy sencillas para entenderlo todo perfectamente.
25 stars 16 forks source link
deep-learning deep-reinforcement-learning machine-learning reinforcement-learning

👋 Curso sobre Reinforcement Learning

🙂 Descripción

En este curso se incluye todo lo básico relacionado con el Aprendizaje por Refuerzo. Desde los conceptos más básicos, como qué es una cadena de Markov, hasta conceptos más interesantes como la inclusión de Redes Neuronales en algoritmos de RL. Para ello, cada una de las clases cuenta con un Jupyter Notebook ejecutable con toda la teoría y con imágenes de esquemas que ayudan a una mejor comprensión. Esta pensado para que sea un curso desde 0, por ello, tanto si eres principiante, como si quieres refrescar conocimientos, este curso es para ti.

🔖 Tabla de Contenidos

Este curso está dividido en varias partes:

📜 Temas

Para ejecutar los notebooks la mejor forma es usar docker. En apenas unos minutos y sin instalar nada tendrás acceso a todos los notebooks. 🤯

0️⃣ Introducción a Reinforcement Learning

Reinforcement Learning Intro

1️⃣ Ecuación de Bellman: El valor de los estados

Bellman_equation State_Value

2️⃣ Ecuación de Bellman: El valor de las acciones

Q-value

3️⃣ Q Learning

Q-learning

⚡ Quick-Start: usando remote containers

1. Instala el Plugin de VSCode de Remote Containers

# Presiona Ctrl + shift + p
# Pega ext install ms-vscode-remote.remote-containers
# Presiona Enter

2. Abre el entorno de desarrollo

# Presiona Ctrl + shift + p
# Busca: Remote-Containers: Rebuild and Reopen in container
# Presiona Enter (y espera, la primera vez tarda unos minutos)

3. Abre los Notebooks

Abre el buscador y ve a http://127.0.0.1:8888/