Megvii-BaseDetection / OTA

Official implementation of our CVPR2021 paper "OTA: Optimal Transport Assignment for Object Detection" in Pytorch.
Apache License 2.0
243 stars 24 forks source link

OTA: Optimal Transport Assignment for Object Detection

GitHub

This project provides an implementation for our CVPR2021 paper "OTA: Optimal Transport Assignment for Object Detection" on PyTorch.

Requirements

Get Started

python3 -m pip install 'git+https://github.com/Megvii-BaseDetection/cvpods.git'

(add --user if you don't have permission)

Or, to install it from a local clone:

git clone https://github.com/Megvii-BaseDetection/cvpods.git python3 -m pip install -e cvpods

Or,

pip install -r requirements.txt python3 setup.py build develop


* prepare datasets
```shell
cd /path/to/cvpods/datasets
ln -s /path/to/your/coco/dataset coco

Train

pods_train --num-gpus 8

Test

pods_test --num-gpus 8 \ MODEL.WEIGHTS /path/to/your/save_dir/ckpt.pth # optional OUTPUT_DIR /path/to/your/save_dir # optional

Multi node training

sudo apt install net-tools ifconfig

pods_train --num-gpus 8 --num-machines N --machine-rank 0/1/.../N-1 --dist-url "tcp://MASTER_IP:port"


### Results on COCO val set

| Model | Backbone | LR Sched. | mAP | Recall | AP50/AP75/APs/APm/APl | Download |
|:------| :----:   | :----: |:---:| :---:| :---:| :---:|
|  [RetinaNet](https://github.com/Megvii-BaseDetection/cvpods/tree/master/playground/detection/coco/retinanet/retinanet.res50.fpn.coco.multiscale.1x) | R50   | 1x       | 36.5 |  53.4  |  56.2/39.3/21.9/40.5/47.7  | - |
|  [Faster R-CNN](https://github.com/Megvii-BaseDetection/cvpods/tree/master/playground/detection/coco/rcnn/faster_rcnn.res50.fpn.coco.multiscale.1x) | R50   | 1x       | 38.1 |  52.2  |  58.9/41.0/22.5/41.5/48.9  | - |
|  [FCOS](https://github.com/Megvii-BaseDetection/cvpods/tree/master/playground/detection/coco/fcos/fcos.res50.fpn.coco.800size.1x) | R50   | 1x       | 38.7 |  57.0   | 57.5/41.7/22.6/42.7/49.9   | - |
|  [FreeAnchor](https://github.com/Megvii-BaseDetection/cvpods/tree/master/playground/detection/coco/free_anchor/free_anchor.res50.fpn.coco.800size.1x) | R50   | 1x | 38.4 | 55.4  | 57.0/41.1/21.9/41.7/51.8      | - |
|  [ATSS](https://github.com/Megvii-BaseDetection/cvpods/tree/master/playground/detection/coco/atss/atss.res50.fpn.coco.800size.1x) | R50   | 1x    | 39.4 | 57.7    |  57.5/42.7/22.9/42.9/51.2   | - |
|  [PAA\(w/. Voting\)](https://github.com/kkhoot/PAA) | R50   | 1x  | 40.4 |   -  |  -   | - |
|  [OTA](https://github.com/Joker316701882/OTA/tree/main/playground/detection/coco/ota.res50.fpn.coco.800size.1x) | R50   | 1x       | **40.7**  |  **59.0** |  **58.4**/**44.3**/**23.2**/**45.0**/**53.6**    | [weights](https://megvii-my.sharepoint.cn/:u:/g/personal/gezheng_megvii_com/EVo55E_uiHJNvtOCoMPmh5wBR0yxZs1ycIugIWTVyLIgvg?e=uIhwBs) |

### Results on COCO test-dev
| Model | Backbone | LR Sched. | Training Scale (ShortSide) |mAP | AP50/AP75/APs/APm/APl | Download |
|:------| :----:   | :----: |:---:| :---:| :---:| :---:|
|  [OTA](https://github.com/Joker316701882/OTA/tree/main/playground/detection/coco/ota.res101.fpn.coco.800size.1x) | R101   | 2x | 640~800 | 45.3 | 63.5/49.3/26.9/48.8/56.1   | weights |
|  [OTA](https://github.com/Joker316701882/OTA/tree/main/playground/detection/coco/ota.x101.fpn.coco.800size.1x) | X101     | 2x | 640~800 | 47.0 | 65.8/51.1/29.2/50.4/57.9 | weights |
|  [OTA](https://github.com/Joker316701882/OTA/tree/main/playground/detection/coco/ota.x101.dcnv2.fpn.coco.800size.1x) | X101-DCN | 2x | 640~800 | 49.2 |   67.6/53.5/30.0/52.5/62.3 | weights |
|  [OTA*](https://github.com/Joker316701882/OTA/tree/main/playground/detection/coco/ota.x101.dcnv2.fpn.coco.800size.1x) | X101-DCN | 2x | 640~800 | 51.5 |   68.6/57.1/34.1/53.7/64.1 | weights |

\* stands for ATSS-style testing time augmentation. To enable testing time augmentation, add/modify the following code frac in the corresponding config.py

```python

TEST=dict(
    DETECTIONS_PER_IMAGE=300,
    AUG=dict(
        ENABLED=True,
        MAX_SIZE=3000,
        MIN_SIZES=(400, 500, 600, 640, 700, 900, 1000, 1100, 1200, 1300, 1400, 1800),
        EXTRA_SIZES=((800, 1333),),
        SCALE_FILTER=True,
        SCALE_RANGES=(
        [96, 10000], [96, 10000], [64, 10000], [64, 10000], [64, 10000], [0, 10000], [0, 10000], [0, 256], [0, 256], [0, 192], [0, 192], [0, 96], [0, 10000])
    )
),

Acknowledgement

This repo is developed based on cvpods. Please check cvpods for more details and features.

License

This repo is released under the Apache 2.0 license. Please see the LICENSE file for more information.