Open ryotaro137 opened 2 years ago
It's quite strange for me. Could you plz show me the profile result in detail?
Results are below.
args:
camid=0, ckpt='tiny.pth', conf=0.3, demo='image', device='gpu', exp_file='exps/default/yolox_tiny.py', experiment_name='yolox_tiny', fp16=True, fuse=False, legacy=False, name=None, nms=0.3, path='fps/others', save_result=False, trt=False, tsize=416)
EXP files
nano:
def __init__(self):
super(Exp, self).__init__()
self.depth = 0.33
self.width = 0.25
self.input_size = (416, 416)
self.random_size = (10, 20)
self.mosaic_scale = (0.5, 1.5)
self.test_size = (416, 416)
self.mosaic_prob = 0.5
self.enable_mixup = False
self.exp_name = os.path.split(os.path.realpath(__file__))[1].split(".")[0]
self.num_classes =3
def get_model(self, sublinear=False):
def init_yolo(M):
for m in M.modules():
if isinstance(m, nn.BatchNorm2d):
m.eps = 1e-3
m.momentum = 0.03
if "model" not in self.__dict__:
from yolox.models import YOLOX, YOLOPAFPN, YOLOXHead
in_channels = [256, 512, 1024]
# NANO model use depthwise = True, which is main difference.
backbone = YOLOPAFPN(
self.depth, self.width, in_channels=in_channels,
act=self.act, depthwise=True,
)
head = YOLOXHead(
self.num_classes, self.width, in_channels=in_channels,
act=self.act, depthwise=True
)
self.model = YOLOX(backbone, head)
self.model.apply(init_yolo)
self.model.head.initialize_biases(1e-2)
return self.model
tiny:
def __init__(self):
super(Exp, self).__init__()
self.depth = 0.33
self.width = 0.375
self.input_size = (416, 416)
self.mosaic_scale = (0.5, 1.5)
self.random_size = (10, 20)
self.test_size = (416, 416)
self.exp_name = os.path.split(os.path.realpath(__file__))[1].split(".")[0]
self.enable_mixup = False
self.num_classes = 3
Maybe because Dwconv in nano model don't adopt Xavier CPU. Ref:https://www.mdpi.com/2077-0472/12/6/856/pdf
I have measured detection speed on Jetson Xaiver NX.
The results is below (using fp16) nano : 0.0721[s] tiny : 0.0662[s]
Would you tell me the cause of the result? Thank you in advance.