Megvii-BaseDetection / YOLOX

YOLOX is a high-performance anchor-free YOLO, exceeding yolov3~v5 with MegEngine, ONNX, TensorRT, ncnn, and OpenVINO supported. Documentation: https://yolox.readthedocs.io/
Apache License 2.0
9.44k stars 2.21k forks source link
deep-learning megengine ncnn object-detection onnx openvino pytorch tensorrt yolo yolov3 yolox

Introduction

YOLOX is an anchor-free version of YOLO, with a simpler design but better performance! It aims to bridge the gap between research and industrial communities. For more details, please refer to our report on Arxiv.

This repo is an implementation of PyTorch version YOLOX, there is also a MegEngine implementation.

Updates!!

Coming soon

Benchmark

Standard Models.

Model size mAPval
0.5:0.95
mAPtest
0.5:0.95
Speed V100
(ms)
Params
(M)
FLOPs
(G)
weights
YOLOX-s 640 40.5 40.5 9.8 9.0 26.8 github
YOLOX-m 640 46.9 47.2 12.3 25.3 73.8 github
YOLOX-l 640 49.7 50.1 14.5 54.2 155.6 github
YOLOX-x 640 51.1 51.5 17.3 99.1 281.9 github
YOLOX-Darknet53 640 47.7 48.0 11.1 63.7 185.3 github
Legacy models |Model |size |mAPtest
0.5:0.95 | Speed V100
(ms) | Params
(M) |FLOPs
(G)| weights | | ------ |:---: | :---: |:---: |:---: | :---: | :----: | |[YOLOX-s](./exps/default/yolox_s.py) |640 |39.6 |9.8 |9.0 | 26.8 | [onedrive](https://megvii-my.sharepoint.cn/:u:/g/personal/gezheng_megvii_com/EW62gmO2vnNNs5npxjzunVwB9p307qqygaCkXdTO88BLUg?e=NMTQYw)/[github](https://github.com/Megvii-BaseDetection/storage/releases/download/0.0.1/yolox_s.pth) | |[YOLOX-m](./exps/default/yolox_m.py) |640 |46.4 |12.3 |25.3 |73.8| [onedrive](https://megvii-my.sharepoint.cn/:u:/g/personal/gezheng_megvii_com/ERMTP7VFqrVBrXKMU7Vl4TcBQs0SUeCT7kvc-JdIbej4tQ?e=1MDo9y)/[github](https://github.com/Megvii-BaseDetection/storage/releases/download/0.0.1/yolox_m.pth) | |[YOLOX-l](./exps/default/yolox_l.py) |640 |50.0 |14.5 |54.2| 155.6 | [onedrive](https://megvii-my.sharepoint.cn/:u:/g/personal/gezheng_megvii_com/EWA8w_IEOzBKvuueBqfaZh0BeoG5sVzR-XYbOJO4YlOkRw?e=wHWOBE)/[github](https://github.com/Megvii-BaseDetection/storage/releases/download/0.0.1/yolox_l.pth) | |[YOLOX-x](./exps/default/yolox_x.py) |640 |**51.2** | 17.3 |99.1 |281.9 | [onedrive](https://megvii-my.sharepoint.cn/:u:/g/personal/gezheng_megvii_com/EdgVPHBziOVBtGAXHfeHI5kBza0q9yyueMGdT0wXZfI1rQ?e=tABO5u)/[github](https://github.com/Megvii-BaseDetection/storage/releases/download/0.0.1/yolox_x.pth) | |[YOLOX-Darknet53](./exps/default/yolov3.py) |640 | 47.4 | 11.1 |63.7 | 185.3 | [onedrive](https://megvii-my.sharepoint.cn/:u:/g/personal/gezheng_megvii_com/EZ-MV1r_fMFPkPrNjvbJEMoBLOLAnXH-XKEB77w8LhXL6Q?e=mf6wOc)/[github](https://github.com/Megvii-BaseDetection/storage/releases/download/0.0.1/yolox_darknet53.pth) |

Light Models.

Model size mAPval
0.5:0.95
Params
(M)
FLOPs
(G)
weights
YOLOX-Nano 416 25.8 0.91 1.08 github
YOLOX-Tiny 416 32.8 5.06 6.45 github
Legacy models |Model |size |mAPval
0.5:0.95 | Params
(M) |FLOPs
(G)| weights | | ------ |:---: | :---: |:---: |:---: | :---: | |[YOLOX-Nano](./exps/default/yolox_nano.py) |416 |25.3 | 0.91 |1.08 | [github](https://github.com/Megvii-BaseDetection/storage/releases/download/0.0.1/yolox_nano.pth) | |[YOLOX-Tiny](./exps/default/yolox_tiny.py) |416 |32.8 | 5.06 |6.45 | [github](https://github.com/Megvii-BaseDetection/storage/releases/download/0.0.1/yolox_tiny_32dot8.pth) |

Quick Start

Installation Step1. Install YOLOX from source. ```shell git clone git@github.com:Megvii-BaseDetection/YOLOX.git cd YOLOX pip3 install -v -e . # or python3 setup.py develop ```
Demo Step1. Download a pretrained model from the benchmark table. Step2. Use either -n or -f to specify your detector's config. For example: ```shell python tools/demo.py image -n yolox-s -c /path/to/your/yolox_s.pth --path assets/dog.jpg --conf 0.25 --nms 0.45 --tsize 640 --save_result --device [cpu/gpu] ``` or ```shell python tools/demo.py image -f exps/default/yolox_s.py -c /path/to/your/yolox_s.pth --path assets/dog.jpg --conf 0.25 --nms 0.45 --tsize 640 --save_result --device [cpu/gpu] ``` Demo for video: ```shell python tools/demo.py video -n yolox-s -c /path/to/your/yolox_s.pth --path /path/to/your/video --conf 0.25 --nms 0.45 --tsize 640 --save_result --device [cpu/gpu] ```
Reproduce our results on COCO Step1. Prepare COCO dataset ```shell cd ln -s /path/to/your/COCO ./datasets/COCO ``` Step2. Reproduce our results on COCO by specifying -n: ```shell python -m yolox.tools.train -n yolox-s -d 8 -b 64 --fp16 -o [--cache] yolox-m yolox-l yolox-x ``` * -d: number of gpu devices * -b: total batch size, the recommended number for -b is num-gpu * 8 * --fp16: mixed precision training * --cache: caching imgs into RAM to accelarate training, which need large system RAM. When using -f, the above commands are equivalent to: ```shell python -m yolox.tools.train -f exps/default/yolox_s.py -d 8 -b 64 --fp16 -o [--cache] exps/default/yolox_m.py exps/default/yolox_l.py exps/default/yolox_x.py ``` **Multi Machine Training** We also support multi-nodes training. Just add the following args: * --num\_machines: num of your total training nodes * --machine\_rank: specify the rank of each node Suppose you want to train YOLOX on 2 machines, and your master machines's IP is 123.123.123.123, use port 12312 and TCP. On master machine, run ```shell python tools/train.py -n yolox-s -b 128 --dist-url tcp://123.123.123.123:12312 --num_machines 2 --machine_rank 0 ``` On the second machine, run ```shell python tools/train.py -n yolox-s -b 128 --dist-url tcp://123.123.123.123:12312 --num_machines 2 --machine_rank 1 ``` **Logging to Weights & Biases** To log metrics, predictions and model checkpoints to [W&B](https://docs.wandb.ai/guides/integrations/other/yolox) use the command line argument `--logger wandb` and use the prefix "wandb-" to specify arguments for initializing the wandb run. ```shell python tools/train.py -n yolox-s -d 8 -b 64 --fp16 -o [--cache] --logger wandb wandb-project yolox-m yolox-l yolox-x ``` An example wandb dashboard is available [here](https://wandb.ai/manan-goel/yolox-nano/runs/3pzfeom0) **Others** See more information with the following command: ```shell python -m yolox.tools.train --help ```
Evaluation We support batch testing for fast evaluation: ```shell python -m yolox.tools.eval -n yolox-s -c yolox_s.pth -b 64 -d 8 --conf 0.001 [--fp16] [--fuse] yolox-m yolox-l yolox-x ``` * --fuse: fuse conv and bn * -d: number of GPUs used for evaluation. DEFAULT: All GPUs available will be used. * -b: total batch size across on all GPUs To reproduce speed test, we use the following command: ```shell python -m yolox.tools.eval -n yolox-s -c yolox_s.pth -b 1 -d 1 --conf 0.001 --fp16 --fuse yolox-m yolox-l yolox-x ```
Tutorials * [Training on custom data](docs/train_custom_data.md) * [Caching for custom data](docs/cache.md) * [Manipulating training image size](docs/manipulate_training_image_size.md) * [Assignment visualization](docs/assignment_visualization.md) * [Freezing model](docs/freeze_module.md)

Deployment

  1. MegEngine in C++ and Python
  2. ONNX export and an ONNXRuntime
  3. TensorRT in C++ and Python
  4. ncnn in C++ and Java
  5. OpenVINO in C++ and Python
  6. Accelerate YOLOX inference with nebullvm in Python

Third-party resources

Cite YOLOX

If you use YOLOX in your research, please cite our work by using the following BibTeX entry:

 @article{yolox2021,
  title={YOLOX: Exceeding YOLO Series in 2021},
  author={Ge, Zheng and Liu, Songtao and Wang, Feng and Li, Zeming and Sun, Jian},
  journal={arXiv preprint arXiv:2107.08430},
  year={2021}
}

In memory of Dr. Jian Sun

Without the guidance of Dr. Jian Sun, YOLOX would not have been released and open sourced to the community. The passing away of Dr. Jian is a huge loss to the Computer Vision field. We add this section here to express our remembrance and condolences to our captain Dr. Jian. It is hoped that every AI practitioner in the world will stick to the concept of "continuous innovation to expand cognitive boundaries, and extraordinary technology to achieve product value" and move forward all the way.

没有孙剑博士的指导,YOLOX也不会问世并开源给社区使用。 孙剑博士的离去是CV领域的一大损失,我们在此特别添加了这个部分来表达对我们的“船长”孙老师的纪念和哀思。 希望世界上的每个AI从业者秉持着“持续创新拓展认知边界,非凡科技成就产品价值”的观念,一路向前。