Training and evaluation scripts for wake word detection DNN models.
** see requirements.txt for specific packages and version
python demo.py --models_dir tf_lite_models/CRNN --model_type CRNN
python demo.py --models_dir tf_lite_models/Wavenet --model_type Wavenet
Preprocess Original Hey-Snips Dataset:
python utils/preprocess_dataset.py --data_dir \
--out_dir \
Create Datasets for Training, Validation and Testing as H5 vectors:
python utils/filter_dataset_to_h5.py --data_dir \
--models_dir \
Convolutional Recurrent Neural Network (CRNN) described in Arik et al. "paper"
Train CRNN, evaluate metrics, and output tflite models:
python wwdetect/CRNN/train.py --data_dir \
Wavenet described in Coucke et al. "paper"
Train Wavenet Model:
python wwdetect/wavenet/train_wavenet.py
Evaluate Wavenet Model:
python wwdetect/wavenet/evaluate_wavenet.py
Convert Wavenet Model to TF-Lite models (encode and detect):
python wwdetect/wavenet/convert_wavenet_tflite.py
Evaluate models using FAR/FRR:
python utils/evaluate_models.py --model_type \
--models_dir \ --data_dir \
python utils/plot_eval_models.py --results_dir_wavenet \
--results_dir_crnn \
all code Copyright 2021: Alireza Bayestehtashk, Amie Roten, Merlin Carson, Meysam Asagari
except spokestack Copyright 2020: Spokestack, Inc.