Get the challenge data and run the DataLoader, transfer the files into a google cloud bucket.
BUCKET_NAME=your-bucket-name
To train locally but using google cloud (just to test, you must have the files locally):
OUTPUT_PATH=logs
DATA_PATH=DataFiles/training_tfrecords
gcloud ml-engine local train \
--module-name trainer.task \
--package-path trainer/ \
--distributed \
-- \
--file-dir $DATA_PATH \
--train-steps 10 \
--num-epochs 1 \
--learning-rate .01 \
--job-dir $OUTPUT_PATH \
--verbosity INFO
To train on google cloud using GPUs (costs money, takes time):
JOB_NAME=isles_train_job
OUTPUT_PATH=gs://$BUCKET_NAME/$JOB_NAME
DATA_PATH=gs://$BUCKET_NAME/data/isles_tfrecords
REGION=us-east1
gcloud ml-engine jobs submit training $JOB_NAME \
--job-dir $OUTPUT_PATH \
--runtime-version 1.2 \
--module-name trainer.task \
--package-path trainer/ \
--scale-tier CUSTOM \
--config config.yaml \
--region $REGION \
-- \
--file-dir $DATA_PATH \
--learning-rate .01 \
--train-steps 1000 \
--num-epochs 30 \
--verbosity DEBUG
To view the output in tensorboard:
python -m tensorflow.tensorboard --logdir=$OUTPUT_PATH
To create a model:
gcloud ml-engine models create isles_2017
To export and deploy a model on google cloud choose a checkpoint and write:
export MODEL_BINARIES=$OUTPUT_PATH/export_ckpt_1504
gcloud ml-engine versions create v7 --model isles_2017 --origin $MODEL_BINARIES --runtime-version 1.2
To get predictions for the training set:
DATA_FORMAT=TF_RECORD
INPUT_PATHS=gs://$BUCKET_NAME/data/isles_tfrecords/*
MODEL_NAME=isles_2017
REGION=us-east1
now=$(date +"%Y%m%d_%H%M%S")
JOB_NAME=isles_predict_$now
OUTPUT_PATH=gs://$BUCKET_NAME/$JOB_NAME/predictions
MAX_WORKER_COUNT=15
gcloud ml-engine jobs submit prediction $JOB_NAME \
--model $MODEL_NAME \
--input-paths $INPUT_PATHS \
--output-path $OUTPUT_PATH \
--region $REGION \
--data-format $DATA_FORMAT \
--max-worker-count=$MAX_WORKER_COUNT
Copy the output from google cloud (you may have to create a local directory first):
gsutil cp $OUTPUT_PATH/* DataFiles/raw_training_predictions/
To get the predictions for the test set run the commands above but change the input path to:
INPUT_PATHS=gs://$BUCKET_NAME/data/testing_tfrecords/*
Copy the output to your machine:
gsutil cp $OUTPUT_PATH/* DataFiles/raw_testing_predictions/
Delete the error log files and run the export file to get .nii files