F5-TTS: Diffusion Transformer with ConvNeXt V2, faster trained and inference.
E2 TTS: Flat-UNet Transformer, closest reproduction from paper.
Sway Sampling: Inference-time flow step sampling strategy, greatly improves performance
# Create a python 3.10 conda env (you could also use virtualenv)
conda create -n f5-tts python=3.10
conda activate f5-tts
# Install pytorch with your CUDA version, e.g.
pip install torch==2.3.0+cu118 torchaudio==2.3.0+cu118 --extra-index-url https://download.pytorch.org/whl/cu118
Then you can choose from a few options below:
pip install git+https://github.com/SWivid/F5-TTS.git
git clone https://github.com/SWivid/F5-TTS.git
cd F5-TTS
# git submodule update --init --recursive # (optional, if need bigvgan)
pip install -e .
If initialize submodule, you should add the following code at the beginning of src/third_party/BigVGAN/bigvgan.py
.
import os
import sys
sys.path.append(os.path.dirname(os.path.abspath(__file__)))
# Build from Dockerfile
docker build -t f5tts:v1 .
# Or pull from GitHub Container Registry
docker pull ghcr.io/swivid/f5-tts:main
Currently supported features:
# Launch a Gradio app (web interface)
f5-tts_infer-gradio
# Specify the port/host
f5-tts_infer-gradio --port 7860 --host 0.0.0.0
# Launch a share link
f5-tts_infer-gradio --share
# Run with flags
# Leave --ref_text "" will have ASR model transcribe (extra GPU memory usage)
f5-tts_infer-cli \
--model "F5-TTS" \
--ref_audio "ref_audio.wav" \
--ref_text "The content, subtitle or transcription of reference audio." \
--gen_text "Some text you want TTS model generate for you."
# Run with default setting. src/f5_tts/infer/examples/basic/basic.toml
f5-tts_infer-cli
# Or with your own .toml file
f5-tts_infer-cli -c custom.toml
# Multi voice. See src/f5_tts/infer/README.md
f5-tts_infer-cli -c src/f5_tts/infer/examples/multi/story.toml
Read training & finetuning guidance for more instructions.
# Quick start with Gradio web interface
f5-tts_finetune-gradio
Use pre-commit to ensure code quality (will run linters and formatters automatically)
pip install pre-commit
pre-commit install
When making a pull request, before each commit, run:
pre-commit run --all-files
Note: Some model components have linting exceptions for E722 to accommodate tensor notation
If our work and codebase is useful for you, please cite as:
@article{chen-etal-2024-f5tts,
title={F5-TTS: A Fairytaler that Fakes Fluent and Faithful Speech with Flow Matching},
author={Yushen Chen and Zhikang Niu and Ziyang Ma and Keqi Deng and Chunhui Wang and Jian Zhao and Kai Yu and Xie Chen},
journal={arXiv preprint arXiv:2410.06885},
year={2024},
}
Our code is released under MIT License. The pre-trained models are licensed under the CC-BY-NC license due to the training data Emilia, which is an in-the-wild dataset. Sorry for any inconvenience this may cause.