MiuLab / PLM-ICD

PLM-ICD: Automatic ICD Coding with Pretrained Language Models
Apache License 2.0
56 stars 21 forks source link

PLM-ICD: Automatic ICD Coding with Pretrained Language Models

image

Reference

Please cite the following paper:

    @inproceedings{huang-etal-2022-plm,
        title = "{PLM}-{ICD}: Automatic {ICD} Coding with Pretrained Language Models",
        author = "Huang, Chao-Wei and Tsai, Shang-Chi and Chen, Yun-Nung",
        booktitle = "Proceedings of the 4th Clinical Natural Language Processing Workshop",
        month = jul,
        year = "2022",
        address = "Seattle, WA",
        publisher = "Association for Computational Linguistics",
        url = "https://aclanthology.org/2022.clinicalnlp-1.2",
        pages = "10--20",
    }

Requirements

Dataset

Unfortunately, we are not allowed to redistribute the MIMIC dataset. Please follow the instructions from caml-mimic to preprocess the MIMIC-2 and MIMIC-3 dataset and place the files under data/mimic2 and data/mimic3 respectively.

How to run

Pretrained LMs

Please download the pretrained LMs you want to use from the following link:

Trained Models

You can also download our trained models to skip the training part. We provide 3 trained models:

Training

  1. cd src
  2. Run the following command to train a model on MIMIC-3 full.
    python3 run_icd.py \
    --train_file ../data/mimic3/train_full.csv \
    --validation_file ../data/mimic3/dev_full.csv \
    --max_length 3072 \
    --chunk_size 128 \
    --model_name_or_path ../models/RoBERTa-base-PM-M3-Voc-distill-align-hf \
    --per_device_train_batch_size 1 \
    --gradient_accumulation_steps 8 \
    --per_device_eval_batch_size 1 \
    --num_train_epochs 20 \
    --num_warmup_steps 2000 \
    --output_dir ../models/roberta-mimic3-full \
    --model_type roberta \
    --model_mode laat

Notes

Inference

  1. cd src
  2. Run the following command to evaluate a model on the test set of MIMIC-3 full.
    python3 run_icd.py \
    --train_file ../data/mimic3/train_full.csv \
    --validation_file ../data/mimic3/test_full.csv \
    --max_length 3072 \
    --chunk_size 128 \
    --model_name_or_path ../models/roberta-mimic3-full \
    --per_device_eval_batch_size 1 \
    --num_train_epochs 0 \
    --output_dir ../models/roberta-mimic3-full \
    --model_type roberta \
    --model_mode laat