.. shields start
|PyPI| |PyPI License| |ReadTheDocs| |Tests| |Coverage| |Black| |Python Versions| |Telegram Channel|
.. |PyPI| image:: https://img.shields.io/pypi/v/ambrosia
:target: https://pypi.org/project/ambrosia
.. |PyPI License| image:: https://img.shields.io/pypi/l/ambrosia.svg
:target: https://github.com/MobileTeleSystems/Ambrosia/blob/main/LICENSE
.. |ReadTheDocs| image:: https://img.shields.io/readthedocs/ambrosia.svg
:target: https://ambrosia.readthedocs.io
.. |Tests| image:: https://img.shields.io/github/actions/workflow/status/MobileTeleSystems/Ambrosia/test.yaml?branch=main
:target: https://github.com/MobileTeleSystems/Ambrosia/actions/workflows/test.yaml?query=branch%3Amain+
.. |Coverage| image:: https://codecov.io/gh/MobileTeleSystems/Ambrosia/branch/main/graph/badge.svg
:target: https://codecov.io/gh/MobileTeleSystems/Ambrosia
.. |Black| image:: https://img.shields.io/badge/code%20style-black-000000.svg
:target: https://github.com/psf/black
.. |Python Versions| image:: https://img.shields.io/pypi/pyversions/ambrosia.svg
:target: https://pypi.org/project/ambrosia
.. |Telegram Channel| image:: https://img.shields.io/badge/telegram-Ambrosia-blueviolet.svg?logo=telegram
:target: https://t.me/+Tkt43TNUUSAxNWNi
.. shields end
.. image:: https://raw.githubusercontent.com/MobileTeleSystems/Ambrosia/main/docs/source/_static/ambrosia.png :height: 320 px :width: 320 px :align: center
.. title
Ambrosia is a Python library for A/B tests design, split and effect measurement. It provides rich set of methods for conducting full A/B testing pipeline.
The project is intended for use in research and production environments based on data in pandas and Spark format.
.. functional
.. documentation
For more details, see the Documentation <https://ambrosia.readthedocs.io/>
and Tutorials <https://github.com/MobileTeleSystems/Ambrosia/tree/main/examples>
.
.. install
You can always get the newest Ambrosia release using pip
.
Stable version is released on every tag to main
branch.
.. code:: bash
pip install ambrosia
Starting from version 0.4.0
, the ability to process PySpark data is optional and can be enabled
using pip
extras during the installation.
.. code:: bash
pip install ambrosia[spark]
.. usage
The main functionality of Ambrosia is contained in several core classes and methods, which are autonomic for each stage of an experiment and have very intuitive interface.
|
Below is a brief overview example of using a set of three classes to conduct some simple experiment.
Designer
.. code:: python
from ambrosia.designer import Designer
designer = Designer(dataframe=df, effects=1.2, metrics='portfel_clc') # 20% effect, and loaded data frame df
designer.run('size')
Splitter
.. code:: python
from ambrosia.splitter import Splitter
splitter = Splitter(dataframe=df, id_column='id') # loaded data frame df with column with id - 'id'
splitter.run(groups_size=500, method='simple')
Tester
.. code:: python
from ambrosia.tester import Tester
tester = Tester(dataframe=df, column_groups='group') # loaded data frame df with groups info 'group'
tester.run(metrics='retention', method='theory', criterion='ttest')
.. develop
To install all requirements run
.. code:: bash
make install
You must have python3
and poetry
installed.
For autoformatting run
.. code:: bash
make autoformat
For linters check run
.. code:: bash
make lint
For tests run
.. code:: bash
make test
For coverage run
.. code:: bash
make coverage
To remove virtual environment run
.. code:: bash
make clean
.. contributors
Developers and evangelists:
Bayramkulov Aslan <https://github.com/aslanbm>
_Khakimov Artem <https://github.com/xandaau>
_Vasin Artem <https://github.com/VictorFromChoback>
_