Visual Grounding with Multi-modal Conditional Adaptation, ACMMM (Oral), 2024.
by Ruilin Yao, Shengwu Xiong, Yichen Zhao, Yi Rong*
Update on 2024/9/7: We have submitted a basic version of MMCA based on Transvg, welcome to use and provide feedback!
Update on 2024/7/31: This paper has been accepted by the ACM Multimedia 2024 (Oral). Our code will be released soon!
Please refer to GETTING_STARGTED.md to learn how to prepare the datasets and pretrained checkpoints.
The models with ResNet-50 backbone and ResNet-101 backbone are available in [Gdrive]
Training
CUDA_VISIBLE_DEVICES=0,1 python -m torch.distributed.launch --nproc_per_node=2 --use_env train.py --batch_size 32 --lr_bert 0.00001 --aug_crop --aug_scale --aug_translate --backbone resnet50 --detr_model ./checkpoints/detr-r50-referit.pth --bert_enc_num 12 --detr_enc_num 6 --dataset referit --max_query_len 20 --output_dir outputs/referit_r50 --epochs 90 --lr_drop 60
We recommend to set --max_query_len 40 for RefCOCOg, and --max_query_len 20 for other datasets.
We recommend to set --epochs 180 (--lr_drop 120 acoordingly) for RefCOCO+, and --epochs 90 (--lr_drop 60 acoordingly) for other datasets.
Evaluation
CUDA_VISIBLE_DEVICES=0,1 python -m torch.distributed.launch --nproc_per_node=2 --use_env eval.py --batch_size 32 --num_workers 4 --bert_enc_num 12 --detr_enc_num 6 --backbone resnet50 --dataset referit --max_query_len 20 --eval_set test --eval_model ./outputs/referit_r50/best_checkpoint.pth --output_dir ./outputs/referit_r50