NCAR / rwrfhydro

A community-contributed tool box for managing, analyzing, and visualizing WRF Hydro (and NWM) input and output files in R.
Other
74 stars 68 forks source link

rwrfhydro

Travis-CI Build
Status

A community-contributed tool box for managing, analyzing, and visualizing WRF Hydro (and HydroDART) input and output files in R.

Purpose

Intentionally, “rwrfhydro” can be read as “our wrf hydro”. The purpose of this R package is to focus community development of tools for working with and analyzing data related to the WRF Hydro model. These tools are both free and open-source, just like R, which should help make them accessible and popular. For users new to R, several introductory resources are listed below.

The purposes of this README are 1) to get you started using rwrfhydro and 2) to explain the basics (and then some) of how we develop the package so you can quickly start adding your contributions.

Table of Contents

Installing

Installing rwrfhydro (not on CRAN) is facilitated by the devtools package (on CRAN), so devtools is installed first. The following is done for the initial install or to update the rwrfhydro package.

install.packages("devtools")
devtools::install_github("NCAR/rwrfhydro")

The very first time this is run, it can take a while to install all the package dependencies listed as “Imports” in the DESCRIPTION file.

To check for updates once rwrfhydro is loaded run CheckForUpdates().

To install other branches than master and perhaps from your own fork:

devtools::install_github("username/rwrfhydro", ref='myBranch')

Importantly, beta functionality can be installed using:

devtools::install_github("NCAR/rwrfhydro", ref='devBranch')

We are finally gaining some Windows users and have attempted to improve portability of rwrfhydro to this system. A primary dependence of rwrfhydro is ncdf4. This ncdf4 package binary can be installed in the following way: First, obtain the binary from http://cirrus.ucsd.edu/~pierce/ncdf/. Then in an R session

install.packages(file.choose(), repos=NULL, type = "binary")

R will open a window for you to choose the downloaded zip file and will install it.

Using

After the one-time install or any subsequent re-installs/updates, simply load the rwrfhydro library in an R session:

library(rwrfhydro)

and now the package (namespace) is available.

Online vignettes (or in R browseVignettes("rwrfhydro")) are probably the easiest way to get in-depth, thematic overviews of rwrfhydro functionality.

To get package metadata and a listing of functions: library(help=rwrfhydro). Just the functions: ls('package:rwrfhydro'). For specific functionality see function help (e.g. ?VisualizeDomain or help(VisualizeDomain)).

Developing and bug reports

Bugs are to be reported here. If you want to help solve bugs and fixes into the code, please continue reading about developing.

There are four main aspects of developing the code base and contributing:

R packageing and some version controll are treated by Hadley Wickham’s book on R Packages. Specific sections of this book are linked below. Further resources on R package development are listed at the end of this page.

Version control for collaboration: Github

Instead of going straight to developing, we recommend that you install rwrfhydro using devtools::install_github('NCAR/rwrfhydro') first, because this streamlines the installation of package dependencies. Note that devtools::install_github('NCAR/rwrfhydro') installs rwrfhydro into you default library path (.libPaths()[1]) and that the source code is not included.

The very best way to obtain and edit the source is to “fork” rwrfhydro on github and then clone your the repository to your machine(s) of choice. You edit your fork and, when it’s ready, you submit a pull request to get the changes back to the main (upstream) fork of rwrfhydro. More details are provided below. Your cloned git repository is not in your default R library path (.libPaths()[1]), but somewhere else where you choose to keep your development code. However, devtools allows you to build your development package into your library path. This means that after you add some code locally, you can library(rwrfhydro) from other R sessions on that machine with your changes appearing in the package. The basic use of devtools is outlined below. It greatly stream lines all aspects of developing R packages and is highly recommended. Particularly, it make is easy to go from github or local changes to an R package.

Forking and cloning

Please fork the repository to contribute. A fork is a separate copy of the main repository on which you have write permissions. Note that you do not have write permissions on any other fork of the repository. Forking is trivial in Github. You have to have a free (for open-source repositories) account to fork on github.

Next you’ll clone your fork to your local computer and you’ll to interact between your forked repository on github, which is called “origin”. The repo “NCAR/rwrfhydro” is known as the “upstream” fork. This is the “official” repo. It’s also called upstream because changes to it should always flow to all other repos so that they can easily sync their separate changes back to it. Keep your fork sync’d with upstream as much/often as possible to avoid painful merges, github notifies downstream forks of changes to upstream.

Because you dont have write permissions to “upstream” (or any other fork), you have to request that your changes be pulled upstream. This is done via a pull request on github (website). We give some tips below and give a general overview of forking on github in this document.

devBranch and pull requests

We maintain two main branches or rwrfhydro: master and devBranch. You should never work on the master branch. All changes have to pass through the devBranch before going in to the master and this is controlled by the package maintainer. Therefore, devBranch is where your pull requests will go. Other barnches on your fork are up to you. How you get your code into your fork’s devBranch is your choice. One suggestion is to work on your personal branch. Then when various files are ready to be contributed to devBranch, you first do git checkout devBranch then followed by git checkout myBranch -- path/to/file for each file you desire to copy from myBranch into devBranch. Finally the git add and git commit formally put these files into devBranch. Some more details on using git are provided in the workflow overview below.

Not using Github.

This is not recommended, but might be possible. It will certainly hinder you interaction with the upstream repo.

Travis-CI and R CMD check

The rwrfhydro repo is configured to build on a third-party virtual linux machine with every push or pull request to the master or devBranch branches. This service is known as Travis-CI (continuous integration). This means your pull requests are automatically checked by R CMD check, this keeps errors from creeping into the upstream code. There are a variety of hurdles to getting code to build on Travis-CI, including installing requisite system and R packages, which can be challenging but worth it for the debugging provided by automated builds in conjunction with R CMD check.

R CMD check accepts a variety of arguments. Ultimately, it 1) checks the source for consistency including across platforms (Windows, OSX, linux), 2) runs all specified code tests, essentially regression tests, 3) runs all the examples provided in the documentation, and 4) builds all the vignettes. Currently, we are skipping vignette building until we can streamline several of these.

You can configure your own fork to build on Travis-CI and you can push frequently to check for errors. This is nearly identical to (slightly more stringent than) running devtools::check(), but all you have to do is push your commits.

Workflow: git, R Packaging, and you

Workflow is approximately this:

Our best practices

R package best practices and code style

http://r-pkgs.had.co.nz/r.html

Organizing functions

http://r-pkgs.had.co.nz/r.html#r-organising

R code style

http://r-pkgs.had.co.nz/r.html#style

Packages are NOT scripts

http://r-pkgs.had.co.nz/r.html#r-differences

Documentation with roxygen

http://r-pkgs.had.co.nz/man.html

Once you get used to this, you will love writing documentation as you go for your R functions.

> GetPkgMeta(listMetaOnly=TRUE)
-----------------------------------
rwrfhydro concepts
-----------------------------------
Ameriflux
DART
data
dataAnalysis
dataGet
dataMgmt
geospatial
getData
GHCN
modelEval
MODIS
ncdf
nudging
plot
SNODAS
SNOTEL
Streamflow
usgs
usgsStreamObs

-----------------------------------
rwrfhydro keywords
-----------------------------------
data
database
hplot
internal
IO
manip
smooth
ts
univar
utilities

Objects in rwrfhydro

We will probably need to develop some s3 classes or reuse some from other packages. List of possible objects: gaugePts object for organizing “frxst points”, both locations and data.

Graphics

We need to resolve if we are going to use base graphics or ggplot or both. I’m leaning towards both. Not all plotting routines have to always be available for a given function, but I think that both will probably develop over time.

Because ggplot has a big learning curve, we can return closures which 1) provide tweakability for basic things to be adjusted in the plot make the plot when called, 2) which return the basic ggplot object which can then also be extended with ggplot commands. I made an example of this in VisualizeDomain.R for ggmap/ggplot objects.

R Package development resources

Introductory R resources (somewhat random)