Closed PetrochukM closed 6 years ago
@PetrochukM I have added a PR that fixes the issue. I had forgotten to add the batch dimension in the output. The rest of the test will fail in the Python code because the Wave writing code is expecting a 1-d Tensor
@RPrenger Thanks for the PR! Let me test it.
Submitted a PR to fix tests: https://github.com/NVIDIA/nv-wavenet/pull/17
Found oddly that the kernel is deterministic between runs but not between batch elements:
nv-wavenet/pytorch$ python3.6 nv_wavenet_test.py
torch.Size([2, 147800])
tensor([ 121, 141, 115, 139, 121, 133, 125, 145, 138, 145,
130, 151, 132, 117, **123**, 134, 119, 119, **171**, 121,
142, 151, 152, 149, 165], dtype=torch.int32, device='cuda:0')
tensor([ 132, 144, 143, 129, 144, 117, 119, 123, 132, 140,
131, 121, 100, 91, **176**, 146, 93, 140, **110**, 113,
96, 168, 160, 102, 158], dtype=torch.int32, device='cuda:0')
nv-wavenet/pytorch$ python3.6 nv_wavenet_test.py
torch.Size([2, 147800])
tensor([ 121, 141, 115, 139, 121, 133, 125, 145, 138, 145,
130, 151, 132, 117, **123**, 134, 119, 119, **171**, 121,
142, 151, 152, 149, 165], dtype=torch.int32, device='cuda:0')
tensor([ 132, 144, 143, 129, 144, 117, 119, 123, 132, 140,
131, 121, 100, 91, **176**, 146, 93, 140, **110**, 113,
96, 168, 160, 102, 158], dtype=torch.int32, device='cuda:0')
Using the same code from above, copying the tensors:
cond_input = cond_input.repeat(1, 2, 1, 1) # Increase the batch size to 2
Checked the audio output, they both samples seemed resonable. This is more interesting than an issue.
Issue description
Running
nv_wavenet_test.py
with an increased batch size causes an error.Offending Code
Error
GPUassert: invalid argument ../nv_wavenet.cuh 547
System Info
PyTorch version: 0.4.0 Python version: 3.6.4 CUDA used to build PyTorch: 9.0.176
OS: Ubuntu 16.04.4 LTS GCC version: (Ubuntu 5.4.0-6ubuntu1~16.04.9) 5.4.0 20160609 CMake version: version 3.5.1
Python version: 3.6 Is CUDA available: Yes CUDA runtime version: 9.0.176 GPU models and configuration: GPU 0: GeForce GTX 1080 Ti Nvidia driver version: 390.30 cuDNN version: Probably one of the following: /usr/lib/x86_64-linux-gnu/libcudnn.so.6.0.21 /usr/lib/x86_64-linux-gnu/libcudnn.so.7.0.5 /usr/local/lib/python2.7/dist-packages/torch/lib/libcudnn-7a90c013.so.7.0.5 /usr/local/lib/python3.5/dist-packages/torch/lib/libcudnn-3f9a723f.so.6.0.21