NVlabs / NVAE

The Official PyTorch Implementation of "NVAE: A Deep Hierarchical Variational Autoencoder" (NeurIPS 2020 spotlight paper)
https://arxiv.org/abs/2007.03898
Other
1.03k stars 163 forks source link

The Official PyTorch Implementation of "NVAE: A Deep Hierarchical Variational Autoencoder" (NeurIPS 2020 Spotlight Paper)

Arash Vahdat·Jan Kautz



NVAE is a deep hierarchical variational autoencoder that enables training SOTA likelihood-based generative models on several image datasets.

Requirements

NVAE is built in Python 3.7 using PyTorch 1.6.0. Use the following command to install the requirements:

pip install -r requirements.txt

Set up file paths and data

We have examined NVAE on several datasets. For large datasets, we store the data in LMDB datasets for I/O efficiency. Click below on each dataset to see how you can prepare your data. Below, $DATA_DIR indicates the path to a data directory that will contain all the datasets and $CODE_DIR refers to the code directory:

MNIST and CIFAR-10 These datasets will be downloaded automatically, when you run the main training for NVAE using `train.py` for the first time. You can use `--data=$DATA_DIR/mnist` or `--data=$DATA_DIR/cifar10`, so that the datasets are downloaded to the corresponding directories.
CelebA 64 Run the following commands to download the CelebA images and store them in an LMDB dataset: ```shell script cd $CODE_DIR/scripts python create_celeba64_lmdb.py --split train --img_path $DATA_DIR/celeba_org --lmdb_path $DATA_DIR/celeba64_lmdb python create_celeba64_lmdb.py --split valid --img_path $DATA_DIR/celeba_org --lmdb_path $DATA_DIR/celeba64_lmdb python create_celeba64_lmdb.py --split test --img_path $DATA_DIR/celeba_org --lmdb_path $DATA_DIR/celeba64_lmdb ``` Above, the images will be downloaded to `$DATA_DIR/celeba_org` automatically and then then LMDB datasets are created at `$DATA_DIR/celeba64_lmdb`.
ImageNet 32x32 Run the following commands to download tfrecord files from [GLOW](https://github.com/openai/glow) and to convert them to LMDB datasets ```shell script mkdir -p $DATA_DIR/imagenet-oord cd $DATA_DIR/imagenet-oord wget https://storage.googleapis.com/glow-demo/data/imagenet-oord-tfr.tar tar -xvf imagenet-oord-tfr.tar cd $CODE_DIR/scripts python convert_tfrecord_to_lmdb.py --dataset=imagenet-oord_32 --tfr_path=$DATA_DIR/imagenet-oord/mnt/host/imagenet-oord-tfr --lmdb_path=$DATA_DIR/imagenet-oord/imagenet-oord-lmdb_32 --split=train python convert_tfrecord_to_lmdb.py --dataset=imagenet-oord_32 --tfr_path=$DATA_DIR/imagenet-oord/mnt/host/imagenet-oord-tfr --lmdb_path=$DATA_DIR/imagenet-oord/imagenet-oord-lmdb_32 --split=validation ```
CelebA HQ 256 Run the following commands to download tfrecord files from [GLOW](https://github.com/openai/glow) and to convert them to LMDB datasets ```shell script mkdir -p $DATA_DIR/celeba cd $DATA_DIR/celeba wget https://storage.googleapis.com/glow-demo/data/celeba-tfr.tar tar -xvf celeba-tfr.tar cd $CODE_DIR/scripts python convert_tfrecord_to_lmdb.py --dataset=celeba --tfr_path=$DATA_DIR/celeba/celeba-tfr --lmdb_path=$DATA_DIR/celeba/celeba-lmdb --split=train python convert_tfrecord_to_lmdb.py --dataset=celeba --tfr_path=$DATA_DIR/celeba/celeba-tfr --lmdb_path=$DATA_DIR/celeba/celeba-lmdb --split=validation ```
FFHQ 256 Visit [this Google drive location](https://drive.google.com/drive/folders/1WocxvZ4GEZ1DI8dOz30aSj2zT6pkATYS) and download `images1024x1024.zip`. Run the following commands to unzip the images and to store them in LMDB datasets: ```shell script mkdir -p $DATA_DIR/ffhq unzip images1024x1024.zip -d $DATA_DIR/ffhq/ cd $CODE_DIR/scripts python create_ffhq_lmdb.py --ffhq_img_path=$DATA_DIR/ffhq/images1024x1024/ --ffhq_lmdb_path=$DATA_DIR/ffhq/ffhq-lmdb --split=train python create_ffhq_lmdb.py --ffhq_img_path=$DATA_DIR/ffhq/images1024x1024/ --ffhq_lmdb_path=$DATA_DIR/ffhq/ffhq-lmdb --split=validation ```
LSUN We use LSUN datasets in our follow-up works. Visit [LSUN](https://www.yf.io/p/lsun) for instructions on how to download this dataset. Since the LSUN scene datasets come in the LMDB format, they are ready to be loaded using torchvision data loaders.

Running the main NVAE training and evaluation scripts

We use the following commands on each dataset for training NVAEs on each dataset for Table 1 in the paper. In all the datasets but MNIST normalizing flows are enabled. Check Table 6 in the paper for more information on training details. Note that for the multinode training (more than 8-GPU experiments), we use the mpirun command to run the training scripts on multiple nodes. Please adjust the commands below according to your setup. Below IP_ADDR is the IP address of the machine that will host the process with rank 0 (see here). NODE_RANK is the index of each node among all the nodes that are running the job.

MNIST Two 16-GB V100 GPUs are used for training NVAE on dynamically binarized MNIST. Training takes about 21 hours. ```shell script export EXPR_ID=UNIQUE_EXPR_ID export DATA_DIR=PATH_TO_DATA_DIR export CHECKPOINT_DIR=PATH_TO_CHECKPOINT_DIR export CODE_DIR=PATH_TO_CODE_DIR cd $CODE_DIR python train.py --data $DATA_DIR/mnist --root $CHECKPOINT_DIR --save $EXPR_ID --dataset mnist --batch_size 200 \ --epochs 400 --num_latent_scales 2 --num_groups_per_scale 10 --num_postprocess_cells 3 --num_preprocess_cells 3 \ --num_cell_per_cond_enc 2 --num_cell_per_cond_dec 2 --num_latent_per_group 20 --num_preprocess_blocks 2 \ --num_postprocess_blocks 2 --weight_decay_norm 1e-2 --num_channels_enc 32 --num_channels_dec 32 --num_nf 0 \ --ada_groups --num_process_per_node 2 --use_se --res_dist --fast_adamax ```
CIFAR-10 Eight 16-GB V100 GPUs are used for training NVAE on CIFAR-10. Training takes about 55 hours. ```shell script export EXPR_ID=UNIQUE_EXPR_ID export DATA_DIR=PATH_TO_DATA_DIR export CHECKPOINT_DIR=PATH_TO_CHECKPOINT_DIR export CODE_DIR=PATH_TO_CODE_DIR cd $CODE_DIR python train.py --data $DATA_DIR/cifar10 --root $CHECKPOINT_DIR --save $EXPR_ID --dataset cifar10 \ --num_channels_enc 128 --num_channels_dec 128 --epochs 400 --num_postprocess_cells 2 --num_preprocess_cells 2 \ --num_latent_scales 1 --num_latent_per_group 20 --num_cell_per_cond_enc 2 --num_cell_per_cond_dec 2 \ --num_preprocess_blocks 1 --num_postprocess_blocks 1 --num_groups_per_scale 30 --batch_size 32 \ --weight_decay_norm 1e-2 --num_nf 1 --num_process_per_node 8 --use_se --res_dist --fast_adamax ```
CelebA 64 Eight 16-GB V100 GPUs are used for training NVAE on CelebA 64. Training takes about 92 hours. ```shell script export EXPR_ID=UNIQUE_EXPR_ID export DATA_DIR=PATH_TO_DATA_DIR export CHECKPOINT_DIR=PATH_TO_CHECKPOINT_DIR export CODE_DIR=PATH_TO_CODE_DIR cd $CODE_DIR python train.py --data $DATA_DIR/celeba64_lmdb --root $CHECKPOINT_DIR --save $EXPR_ID --dataset celeba_64 \ --num_channels_enc 64 --num_channels_dec 64 --epochs 90 --num_postprocess_cells 2 --num_preprocess_cells 2 \ --num_latent_scales 3 --num_latent_per_group 20 --num_cell_per_cond_enc 2 --num_cell_per_cond_dec 2 \ --num_preprocess_blocks 1 --num_postprocess_blocks 1 --weight_decay_norm 1e-1 --num_groups_per_scale 20 \ --batch_size 16 --num_nf 1 --ada_groups --num_process_per_node 8 --use_se --res_dist --fast_adamax ```
ImageNet 32x32 24 16-GB V100 GPUs are used for training NVAE on ImageNet 32x32. Training takes about 70 hours. ```shell script export EXPR_ID=UNIQUE_EXPR_ID export DATA_DIR=PATH_TO_DATA_DIR export CHECKPOINT_DIR=PATH_TO_CHECKPOINT_DIR export CODE_DIR=PATH_TO_CODE_DIR export IP_ADDR=IP_ADDRESS export NODE_RANK=NODE_RANK_BETWEEN_0_TO_2 cd $CODE_DIR mpirun --allow-run-as-root -np 3 -npernode 1 bash -c \ 'python train.py --data $DATA_DIR/imagenet-oord/imagenet-oord-lmdb_32 --root $CHECKPOINT_DIR --save $EXPR_ID --dataset imagenet_32 \ --num_channels_enc 192 --num_channels_dec 192 --epochs 45 --num_postprocess_cells 2 --num_preprocess_cells 2 \ --num_latent_scales 1 --num_latent_per_group 20 --num_cell_per_cond_enc 2 --num_cell_per_cond_dec 2 \ --num_preprocess_blocks 1 --num_postprocess_blocks 1 --num_groups_per_scale 28 \ --batch_size 24 --num_nf 1 --warmup_epochs 1 \ --weight_decay_norm 1e-2 --weight_decay_norm_anneal --weight_decay_norm_init 1e0 \ --num_process_per_node 8 --use_se --res_dist \ --fast_adamax --node_rank $NODE_RANK --num_proc_node 3 --master_address $IP_ADDR ' ```
CelebA HQ 256 24 32-GB V100 GPUs are used for training NVAE on CelebA HQ 256. Training takes about 94 hours. ```shell script export EXPR_ID=UNIQUE_EXPR_ID export DATA_DIR=PATH_TO_DATA_DIR export CHECKPOINT_DIR=PATH_TO_CHECKPOINT_DIR export CODE_DIR=PATH_TO_CODE_DIR export IP_ADDR=IP_ADDRESS export NODE_RANK=NODE_RANK_BETWEEN_0_TO_2 cd $CODE_DIR mpirun --allow-run-as-root -np 3 -npernode 1 bash -c \ 'python train.py --data $DATA_DIR/celeba/celeba-lmdb --root $CHECKPOINT_DIR --save $EXPR_ID --dataset celeba_256 \ --num_channels_enc 30 --num_channels_dec 30 --epochs 300 --num_postprocess_cells 2 --num_preprocess_cells 2 \ --num_latent_scales 5 --num_latent_per_group 20 --num_cell_per_cond_enc 2 --num_cell_per_cond_dec 2 \ --num_preprocess_blocks 1 --num_postprocess_blocks 1 --weight_decay_norm 1e-2 --num_groups_per_scale 16 \ --batch_size 4 --num_nf 2 --ada_groups --min_groups_per_scale 4 \ --weight_decay_norm_anneal --weight_decay_norm_init 1. --num_process_per_node 8 --use_se --res_dist \ --fast_adamax --num_x_bits 5 --node_rank $NODE_RANK --num_proc_node 3 --master_address $IP_ADDR ' ``` In our early experiments, a smaller model with 24 channels instead of 30, could be trained on only 8 GPUs in the same time (with the batch size of 6). The smaller models obtain only 0.01 bpd higher negative log-likelihood.
FFHQ 256 24 32-GB V100 GPUs are used for training NVAE on FFHQ 256. Training takes about 160 hours. ```shell script export EXPR_ID=UNIQUE_EXPR_ID export DATA_DIR=PATH_TO_DATA_DIR export CHECKPOINT_DIR=PATH_TO_CHECKPOINT_DIR export CODE_DIR=PATH_TO_CODE_DIR export IP_ADDR=IP_ADDRESS export NODE_RANK=NODE_RANK_BETWEEN_0_TO_2 cd $CODE_DIR mpirun --allow-run-as-root -np 3 -npernode 1 bash -c \ 'python train.py --data $DATA_DIR/ffhq/ffhq-lmdb --root $CHECKPOINT_DIR --save $EXPR_ID --dataset ffhq \ --num_channels_enc 30 --num_channels_dec 30 --epochs 200 --num_postprocess_cells 2 --num_preprocess_cells 2 \ --num_latent_scales 5 --num_latent_per_group 20 --num_cell_per_cond_enc 2 --num_cell_per_cond_dec 2 \ --num_preprocess_blocks 1 --num_postprocess_blocks 1 --weight_decay_norm 1e-1 --num_groups_per_scale 16 \ --batch_size 4 --num_nf 2 --ada_groups --min_groups_per_scale 4 \ --weight_decay_norm_anneal --weight_decay_norm_init 1. --num_process_per_node 8 --use_se --res_dist \ --fast_adamax --num_x_bits 5 --learning_rate 8e-3 --node_rank $NODE_RANK --num_proc_node 3 --master_address $IP_ADDR ' ``` In our early experiments, a smaller model with 24 channels instead of 30, could be trained on only 8 GPUs in the same time (with the batch size of 6). The smaller models obtain only 0.01 bpd higher negative log-likelihood.

If for any reason your training is stopped, use the exact same commend with the addition of --cont_training to continue training from the last saved checkpoint. If you observe NaN, continuing the training using this flag usually will not fix the NaN issue.

Known Issues

Cannot build CelebA 64 or training gives NaN right at the beginning on this dataset Several users have reported issues building CelebA 64 or have encountered NaN at the beginning of training on this dataset. If you face similar issues on this dataset, you can download this dataset manually and build LMDBs using instructions on this issue https://github.com/NVlabs/NVAE/issues/2 .
Getting NaN after a few epochs of training One of the main challenges in training very deep hierarchical VAEs is training instability that we discussed in the paper. We have verified that the settings in the commands above can be trained in a stable way. If you modify the settings above and you encounter NaN after a few epochs of training, you can use these tricks to stabilize your training: i) increase the spectral regularization coefficient, `--weight_decay_norm`. ii) Use exponential decay on `--weight_decay_norm` using `--weight_decay_norm_anneal` and `--weight_decay_norm_init`. iii) Decrease learning rate.
Training freezes with no NaN In some very rare cases, we observed that training freezes after 2-3 days of training. We believe the root cause of this is because of a racing condition that is happening in one of the low-level libraries. If for any reason the training is stopped, kill your current run, and use the exact same commend with the addition of `--cont_training` to continue training from the last saved checkpoint.

Monitoring the training progress

While running any of the commands above, you can monitor the training progress using Tensorboard:

Click here ```shell script tensorboard --logdir $CHECKPOINT_DIR/eval-$EXPR_ID/ ``` Above, `$CHECKPOINT_DIR` and `$EXPR_ID` are the same variables used for running the main training script.

Post-training sampling, evaluation, and checkpoints

Evaluating Log-Likelihood You can use the following command to load a trained model and evaluate it on the test datasets: ```shell script cd $CODE_DIR python evaluate.py --checkpoint $CHECKPOINT_DIR/eval-$EXPR_ID/checkpoint.pt --data $DATA_DIR/mnist --eval_mode=evaluate --num_iw_samples=1000 ``` Above, `--num_iw_samples` indicates the number of importance weighted samples used in evaluation. `$CHECKPOINT_DIR` and `$EXPR_ID` are the same variables used for running the main training script. Set `--data` to the same argument that was used when training NVAE (our example is for MNIST).
Sampling You can also use the following command to generate samples from a trained model: ```shell script cd $CODE_DIR python evaluate.py --checkpoint $CHECKPOINT_DIR/eval-$EXPR_ID/checkpoint.pt --eval_mode=sample --temp=0.6 --readjust_bn ``` where `--temp` sets the temperature used for sampling and `--readjust_bn` enables readjustment of the BN statistics as described in the paper. If you remove `--readjust_bn`, the sampling will proceed with BN layer in the eval mode (i.e., BN layers will use running mean and variances extracted during training).
Computing FID You can compute the FID score using 50K samples. To do so, you will need to create a mean and covariance statistics file on the training data using a command like: ```shell script cd $CODE_DIR python scripts/precompute_fid_statistics.py --data $DATA_DIR/cifar10 --dataset cifar10 --fid_dir /tmp/fid-stats/ ``` The command above computes the references statistics on the CIFAR-10 dataset and stores them in the `--fid_dir` durectory. Given the reference statistics file, we can run the following command to compute the FID score: ```shell script cd $CODE_DIR python evaluate.py --checkpoint $CHECKPOINT_DIR/eval-$EXPR_ID/checkpoint.pt --data $DATA_DIR/cifar10 --eval_mode=evaluate_fid --fid_dir /tmp/fid-stats/ --temp=0.6 --readjust_bn ``` where `--temp` sets the temperature used for sampling and `--readjust_bn` enables readjustment of the BN statistics as described in the paper. If you remove `--readjust_bn`, the sampling will proceed with BN layer in the eval mode (i.e., BN layers will use running mean and variances extracted during training). Above, `$CHECKPOINT_DIR` and `$EXPR_ID` are the same variables used for running the main training script. Set `--data` to the same argument that was used when training NVAE (our example is for MNIST).
Checkpoints We provide checkpoints on MNIST, CIFAR-10, CelebA 64, CelebA HQ 256, FFHQ in [this Google drive directory](https://drive.google.com/drive/folders/1KVpw12AzdVjvbfEYM_6_3sxTy93wWkbe?usp=sharing). For CIFAR10, we provide two checkpoints as we observed that a multiscale NVAE provides better qualitative results than a single scale model on this dataset. The multiscale model is only slightly worse in terms of log-likelihood (0.01 bpd). We also observe that one of our early models on CelebA HQ 256 with 0.01 bpd worse likelihood generates much better images in low temperature on this dataset. You can use the commands above to evaluate or sample from these checkpoints.

How to construct smaller NVAE models

In the commands above, we are constructing big NVAE models that require several days of training in most cases. If you'd like to construct smaller NVAEs, you can use these tricks:

Understanding the implementation

If you are modifying the code, you can use the following figure to map the code to the paper.

Traversing the latent space

We can generate images by traversing in the latent space of NVAE. This sequence is generated using our model trained on CelebA HQ, by interpolating between samples generated with temperature 0.6. Some artifacts are due to color quantization in GIFs.

License

Please check the LICENSE file. NVAE may be used non-commercially, meaning for research or evaluation purposes only. For business inquiries, please contact researchinquiries@nvidia.com.

You should take into consideration that VAEs are trained to mimic the training data distribution, and, any bias introduced in data collection will make VAEs generate samples with a similar bias. Additional bias could be introduced during model design, training, or when VAEs are sampled using small temperatures. Bias correction in generative learning is an active area of research, and we recommend interested readers to check this area before building applications using NVAE.

Bibtex:

Please cite our paper, if you happen to use this codebase:

@inproceedings{vahdat2020NVAE,
  title={{NVAE}: A Deep Hierarchical Variational Autoencoder},
  author={Vahdat, Arash and Kautz, Jan},
  booktitle={Neural Information Processing Systems (NeurIPS)},
  year={2020}
}