This repository contains the official code implementation for SDS-Complete (NeurIPS 2023). The code is based on https://github.com/ashawkey/stable-dreamfusion.
The code is compatible with Python 3.7 and pytoch 1.13.1. We recommned using anaconda and pip to install the required packages:
conda create -n "sdscomplete" python=3.7
conda activate sdscomplete
pip install torch==1.13.1+cu117 torchvision==0.14.1+cu117 torchaudio==0.13.1 --extra-index-url https://download.pytorch.org/whl/cu117
pip install scipy
pip install tqdm
pip install imageio
pip install pandas
pip install scikit-image==0.18.3
pip install opencv-python
pip install matplotlib
pip install trimesh
pip install transformers
pip install diffusers
The code assumes that the folder data_processing/redwood_dataset contains the input scans (and GT surfaces for evaluation if available).
.
├── main.py
├── ...
├── data_processing
│ ├── README_data.md
| ├── ...
│ └── redwood_dataset
| ├── depths
| ├── GT
| ├── point_clouds
| └── world_planes
└── workspace
See data_processing/README_data.md for data processing instructions.
python main.py --object_id_number=09639
A running folder with checkpoints, surfaces and rendering images will be logged to the folder workspace
If you find our work useful in your research, please consider citing:
@article{kasten2024point,
title={Point Cloud Completion with Pretrained Text-to-Image Diffusion Models},
author={Kasten, Yoni and Rahamim, Ohad and Chechik, Gal},
journal={Advances in Neural Information Processing Systems},
volume={36},
year={2024}
}