Hierarchically-Refined Label Attention Network for Sequence Labeling (EMNLP 2019)
The model consists of two BiLSTM-LAN layers. Each BiLSTM-LAN layer is composed of a BiLSTM encoding sublayer and a label-attention inference sublayer. In paticular, the former is the same as the BiLSTM layer in the baseline model, while the latter uses multihead attention to jointly encode information from the word representation subspace and the label representation subspace.
python main.py --learning_rate 0.01 --lr_decay 0.035 --dropout 0.5 --hidden_dim 400 --lstm_layer 3 --momentum 0.9 --whether_clip_grad True --clip_grad 5.0 \
--train_dir 'wsj_pos/train.pos' --dev_dir 'wsj_pos/dev.pos' --test_dir 'wsj_pos/test.pos' --model_dir 'wsj_pos/' --word_emb_dir 'glove.6B.100d.txt'
ID | TASK | Dataset | Performace |
---|---|---|---|
1 | POS | wsj | 97.65 |
2 | POS | UD v2.2 | 95.59 |
3 | NER | OntoNotes 5.0 | 88.16 |
4 | CCG | CCGBank | 94.7 |
Leyang Cui and Yue Zhang. 2019. Hierarchically-refined label attention network for sequence labeling.InProceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pages 4106–4119, Hong Kong, China. Association for Computational Linguistics.
@inproceedings{cui-zhang-2019-hierarchically,
title = "Hierarchically-Refined Label Attention Network for Sequence Labeling",
author = "Cui, Leyang and
Zhang, Yue",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP)",
month = nov,
year = "2019",
address = "Hong Kong, China",
publisher = "Association for Computational Linguistics",
url = "https://www.aclweb.org/anthology/D19-1422",
pages = "4106--4119",
}