NeroLoh / darts-tensorflow

Tensorflow code for Differentiable architecture search
73 stars 18 forks source link

Paper

This code implement the DARTS paper in Tensorflow

DARTS: Differentiable Architecture Search
Hanxiao Liu, Karen Simonyan, Yiming Yang.
arXiv:1806.09055.

darts

Architecture Search

To carry out architecture search using 2nd-order approximation, run

python cnn/train_search.py

NOTE:

Here shows the details training pocess

darts darts

Fig. The Train loss and Valid loss of the searching process

The train loss is decreased steadly during the searching pocess, which is more stable than the RL based method. Note that the valid loss refer to the 2nd-order loss for architecture params.

darts

Fig. The final normal cell

darts

Fig. The final reduction cell

Architecture evaluation

The test error finally decreased to around 5.8 after training 415 epoches, while the best results in pytorch version is 2.76 but trained with 600 epoches. Training more epoches can narrow the gap of performance drop. Besides that, repeating the architecture search process with different seed to choose the best structure can avoid local minimun.

darts

Fig. The test accuracy of the searched architecture

Acknowledgement