Nightmare-n / PVT-SSD

PVT-SSD: Single-Stage 3D Object Detector with Point-Voxel Transformer (CVPR 2023)
Apache License 2.0
43 stars 5 forks source link

arXiv GitHub Stars visitors

PVT-SSD: Single-Stage 3D Object Detector with Point-Voxel Transformer

Installation

We test this project on NVIDIA A100 GPUs and Ubuntu 18.04.

conda create -n pvt-ssd python=3.7
conda activate pvt-ssd
conda install -y pytorch==1.10.1 torchvision==0.11.2 cudatoolkit=11.1 -c pytorch -c conda-forge
conda install -y -c fvcore -c iopath -c conda-forge fvcore iopath
conda install -y pytorch3d -c pytorch3d
pip install numpy==1.19.5 protobuf==3.19.4 scikit-image==0.19.2 waymo-open-dataset-tf-2-2-0 nuscenes-devkit==1.0.5 einops==0.6.0 spconv-cu111 numba scipy pyyaml easydict fire tqdm shapely matplotlib opencv-python addict pyquaternion awscli open3d pandas future pybind11 tensorboardX tensorboard Cython
pip install torch-scatter -f https://data.pyg.org/whl/torch-1.10.1+cu111.html
git clone https://github.com/Nightmare-n/PVT-SSD
cd PVT-SSD && python setup.py develop --user

Data Preparation

Please follow the instruction of OpenPCDet to prepare the dataset. For the Waymo dataset, we use the evaluation toolkits to evaluate detection results.

data
│── waymo
│   │── ImageSets/
│   │── raw_data
│   │   │── segment-xxxxxxxx.tfrecord
│   │   │── ...
│   │── waymo_processed_data
│   │   │── segment-xxxxxxxx/
│   │   │── ...
│   │── waymo_processed_data_gt_database_train_sampled_1/
│   │── waymo_processed_data_waymo_dbinfos_train_sampled_1.pkl
│   │── waymo_processed_data_infos_test.pkl
│   │── waymo_processed_data_infos_train.pkl
│   │── waymo_processed_data_infos_val.pkl
│   │── compute_detection_metrics_main
│   │── gt.bin
│── kitti
│   │── ImageSets/
│   │── training
│   │   │── label_2/
│   │   │── velodyne/
│   │   │── ...
│   │── testing
│   │   │── velodyne/
│   │   │── ...
│   │── gt_database/
│   │── kitti_dbinfos_train.pkl
│   │── kitti_infos_test.pkl
│   │── kitti_infos_train.pkl
│   │── kitti_infos_val.pkl
│   │── kitti_infos_trainval.pkl
│── once
│   │── ImageSets/
│   │── data
│   │   │── 000000/
│   │   │── ...
│   │── gt_database/
│   │── once_dbinfos_train.pkl
│   │── once_infos_raw_large.pkl
│   │── once_infos_raw_medium.pkl
│   │── once_infos_raw_small.pkl
│   │── once_infos_train.pkl
│   │── once_infos_val.pkl
│── kitti-360
│   │── data_3d_raw
│   │   │── xxxxxxxx_sync/
│   │   │── ...
│── ckpts
│   │── pvt_ssd.pth
│   │── ...

Training & Testing

# train
bash scripts/dist_train.sh

# test
bash scripts/dist_test.sh

Results

Waymo

Vec_L1 Vec_L2 Ped_L1 Ped_L2 Cyc_L1 Cyc_L2 Model
PVT-SSD 79.2/78.7 70.2/69.8 79.9/74.0 72.6/67.0 77.1/76.0 74.0/73.0 log
PVT-SSD_3f 80.6/80.2 71.9/71.5 83.9/80.6 75.1/72.1 77.9/77.0 74.8/74.0 log

We could not provide the above pretrained models due to Waymo Dataset License Agreement.

Citation

If you find this project useful in your research, please consider citing:

@inproceedings{yang2023pvtssd,
    author    = {Yang, Honghui and Wang, Wenxiao and Chen, Minghao and Lin, Binbin and He, Tong and Chen, Hua and He, Xiaofei and Ouyang, Wanli},
    title     = {PVT-SSD: Single-Stage 3D Object Detector With Point-Voxel Transformer},
    booktitle = {Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)},
    month     = {June},
    year      = {2023},
    pages     = {13476-13487}
}

Acknowledgement

This project is mainly based on the following codebases. Thanks for their great works!