OasisYang / Wild6D

MIT License
44 stars 0 forks source link

Category-Level 6D Object Pose Estimation in the Wild: A Semi-Supervised Learning Approach and A New Dataset

This repository contains the official implementation for the following paper:

Category-Level 6D Object Pose Estimation in the Wild: A Semi-Supervised Learning Approach and A New Dataset
Yang Fu, Xiaolong Wang
Project Page | Paper (arXiv)

NeurIPS 2022

approach

Progress

Requirements

Environments

Unzip and organize these files in $ROOT/data as the following structure:

data
├── Wild6D
│   ├── bottle
│   ├── bowl
│   ├── camera
│   ├── laptop
│   ├── mug
│   └── test_set
│       ├──pkl_annotations
│       │   ├── bottle
│       │   ├── bowl
│       │       ...
│       ├── bottle
│       ├── bowl
│           ...
├── meshes

Evaluation

Contact

Contact Yang Fu if you have any further questions. This repository is for academic research use only.

Acknowledgments

Our codebase builds heavily on NOCS and Shape-Prior. Thanks for open-sourcing!.

Citation


@inproceedings{fucategory,
  title={Category-Level 6D Object Pose Estimation in the Wild: A Semi-Supervised Learning Approach and A New Dataset},
  author={Fu, Yang and Wang, Xiaolong},
  booktitle={Advances in Neural Information Processing Systems},
  year={2022}
}