OpenAMP / open-amp

The main OpenAMP library implementing RPMSG, Virtio, and Remoteproc for RTOS etc
https://www.openampproject.org/
Other
678 stars 278 forks source link

open-amp

This repository is the home for the Open Asymmetric Multi Processing (OpenAMP) framework project. The OpenAMP framework provides software components that enable development of software applications for Asymmetric Multiprocessing (AMP) systems. The framework provides the following key capabilities.

  1. Provides Life Cycle Management, and Inter Processor Communication capabilities for management of remote compute resources and their associated software contexts.
  2. Provides a stand alone library usable with RTOS and Baremetal software environments
  3. Compatibility with upstream Linux remoteproc and rpmsg components
  4. Following AMP configurations supported a. Linux host/Generic(Baremetal) remote b. Generic(Baremetal) host/Linux remote
  5. Proxy infrastructure and supplied demos showcase ability of proxy on host to handle printf, scanf, open, close, read, write calls from Bare metal based remote contexts.

OpenAMP Source Structure

|- lib/
|  |- virtio/     # virtio implementation
|  |- rpmsg/      # rpmsg implementation
|  |- remoteproc/ # remoteproc implementation
|  |- proxy/      # implement one processor access device on the
|  |              # other processor with file operations
|- apps/        # demonstration/testing applications
|  |- examples/ # Application samples using the OpenAMP framework.
|  |- machine/  # common files for machine can be shared by applications
|  |            # It is up to each app to decide whether to use these files.
|  |- system/   # common files for system can be shared by applications
|               # It is up to each app to decide whether to use these files.
|- cmake        # CMake files
|- script       # helper scripts (such as checkpatch) for contributors.

OpenAMP library libopen_amp is composed of the following directories in lib/:

OpenAMP system/machine support has been moved to libmetal, the system/machine layer in the apps/ directory is for system application initialization, and resource table definition.

libmetal APIs used in OpenAMP

Here are the libmetal APIs used by OpenAMP, if you want to port OpenAMP for your system, you will need to implement the following libmetal APIs in the libmetal's lib/system/<SYS> directory:

Please refer to lib/system/generic when you port libmetal for your system.

If you a different compiler to GNU gcc, please refer to lib/compiler/gcc/ to port libmetal for your compiler. At the moment, OpenAMP needs the atomic operations defined in lib/compiler/gcc/atomic.h.

OpenAMP Compilation

OpenAMP uses CMake for library and demonstration application compilation. OpenAMP requires libmetal library. For now, you will need to download and compile libmetal library separately before you compiling OpenAMP library. In future, we will try to make libmetal as a submodule to OpenAMP to make this flow easier.

Some Cmake options are available to allow user to customize to the OpenAMP library for it project:

Example to compile OpenAMP for Zephyr

The Zephyr open-amp repo implements the open-amp library for the Zephyr project. It is mainly a fork of this repository, with some add-ons for integration in the Zephyr project. The standard way to compile OpenAMP for a Zephyr project is to use Zephyr build environment. Please refer to Zephyr OpenAMP samples for examples and Zephyr documentation for the build process.

Example to compile OpenAMP for communication between Linux processes:

The OpenAMP library will be generated to build/usr/local/lib directory, headers will be generated to build/usr/local/include directory, and the applications executable will be generated to build/usr/local/bin directory.

Example to compile Zynq UltraScale+ MPSoC R5 generic(baremetal) remote:

The OpenAMP library will be generated to build/usr/local/lib directory, headers will be generated to build/usr/local/include directory, and the applications executable will be generated to build/usr/local/bin directory.

Example to compile OpenAMP Linux Userspace for Zynq UltraScale+ MPSoC

We can use yocto to build the OpenAMP Linux userspace library and application. open-amp and libmetal recipes are in this yocto layer: https://github.com/OpenAMP/meta-openamp

In order to user OpenAMP(RPMsg) in Linux userspace, you will need to have put the IPI device, vring memory and shared buffer memory to your Linux kernel device tree. The device tree example can be found here: https://github.com/OpenAMP/open-amp/blob/main/apps/machine/zynqmp/openamp-linux-userspace.dtsi

Version

The OpenAMP version follows the set of rule proposed in Semantic Versioning specification.

Supported System and Machines

For now, it supports:

Known Limitations:

  1. In case of OpenAMP on Linux userspace for inter processors communication, it only supports static vrings and shared buffers.
  2. sudo is required to run the OpenAMP demos between Linux processes, as it doesn't work on some systems if you are normal users.

How to contribute:

As an open-source project, we welcome and encourage the community to submit patches directly to the project. As a contributor you should be familiar with common developer tools such as Git and CMake, and platforms such as GitHub. Then following points should be rescpected to facilitate the review process.

Licencing

Code is contributed to the Linux kernel under a number of licenses, but all code must be compatible with version the BSD License, which is the license covering the OpenAMP distribution as a whole. In practice, use the following tag instead of the full license text in the individual files:

```
SPDX-License-Identifier:    BSD-3-Clause
SPDX-License-Identifier:    BSD-2-Clause
```

Signed-off-by

Commit message must contain Signed-off-by: line and your email must match the change authorship information. Make sure your .gitconfig is set up correctly:

```
git config --global user.name "first-name Last-Namer"
git config --global user.email "yourmail@company.com"
```

gitlint

Before you submit a pull request to the project, verify your commit messages meet the requirements. The check can be performed locally using the the gitlint command.

Run gitlint locally in your tree and branch where your patches have been committed:

  ```gitlint```

Note, gitlint only checks HEAD (the most recent commit), so you should run it after each commit, or use the --commits option to specify a commit range covering all the development patches to be submitted.

Code style

In general, follow the Linux kernel coding style, with the following exceptions:

The Linux kernel GPL-licensed tool checkpatch is used to check coding style conformity.Checkpatch is available in the scripts directory.

To check your \<n> commits in your git branch:

   ./scripts/checkpatch.pl --strict  -g HEAD-<n>

Send a pull request

We use standard github mechanism for pull request. Please refer to github documentation for help.

Communication and Collaboration

Subscribe to the OpenAMP mailing list(openamp-rp@lists.openampproject.org).

For more details on the framework please refer to the OpenAMP Docs.