Get early access to the desktop app | Documentation
pip install open-interpreter
Not working? Read our setup guide.
interpreter
Open Interpreter lets LLMs run code (Python, Javascript, Shell, and more) locally. You can chat with Open Interpreter through a ChatGPT-like interface in your terminal by running $ interpreter
after installing.
This provides a natural-language interface to your computer's general-purpose capabilities:
⚠️ Note: You'll be asked to approve code before it's run.
pip install open-interpreter
After installation, simply run interpreter
:
interpreter
from interpreter import interpreter
interpreter.chat("Plot AAPL and META's normalized stock prices") # Executes a single command
interpreter.chat() # Starts an interactive chat
Press the ,
key on this repository's GitHub page to create a codespace. After a moment, you'll receive a cloud virtual machine environment pre-installed with open-interpreter. You can then start interacting with it directly and freely confirm its execution of system commands without worrying about damaging the system.
OpenAI's release of Code Interpreter with GPT-4 presents a fantastic opportunity to accomplish real-world tasks with ChatGPT.
However, OpenAI's service is hosted, closed-source, and heavily restricted:
Open Interpreter overcomes these limitations by running in your local environment. It has full access to the internet, isn't restricted by time or file size, and can utilize any package or library.
This combines the power of GPT-4's Code Interpreter with the flexibility of your local development environment.
Update: The Generator Update (0.1.5) introduced streaming:
message = "What operating system are we on?"
for chunk in interpreter.chat(message, display=False, stream=True):
print(chunk)
To start an interactive chat in your terminal, either run interpreter
from the command line:
interpreter
Or interpreter.chat()
from a .py file:
interpreter.chat()
You can also stream each chunk:
message = "What operating system are we on?"
for chunk in interpreter.chat(message, display=False, stream=True):
print(chunk)
For more precise control, you can pass messages directly to .chat(message)
:
interpreter.chat("Add subtitles to all videos in /videos.")
# ... Streams output to your terminal, completes task ...
interpreter.chat("These look great but can you make the subtitles bigger?")
# ...
In Python, Open Interpreter remembers conversation history. If you want to start fresh, you can reset it:
interpreter.messages = []
interpreter.chat()
returns a List of messages, which can be used to resume a conversation with interpreter.messages = messages
:
messages = interpreter.chat("My name is Killian.") # Save messages to 'messages'
interpreter.messages = [] # Reset interpreter ("Killian" will be forgotten)
interpreter.messages = messages # Resume chat from 'messages' ("Killian" will be remembered)
You can inspect and configure Open Interpreter's system message to extend its functionality, modify permissions, or give it more context.
interpreter.system_message += """
Run shell commands with -y so the user doesn't have to confirm them.
"""
print(interpreter.system_message)
Open Interpreter uses LiteLLM to connect to hosted language models.
You can change the model by setting the model parameter:
interpreter --model gpt-3.5-turbo
interpreter --model claude-2
interpreter --model command-nightly
In Python, set the model on the object:
interpreter.llm.model = "gpt-3.5-turbo"
Find the appropriate "model" string for your language model here.
Open Interpreter can use OpenAI-compatible server to run models locally. (LM Studio, jan.ai, ollama etc)
Simply run interpreter
with the api_base URL of your inference server (for LM studio it is http://localhost:1234/v1
by default):
interpreter --api_base "http://localhost:1234/v1" --api_key "fake_key"
Alternatively you can use Llamafile without installing any third party software just by running
interpreter --local
for a more detailed guide check out this video by Mike Bird
How to run LM Studio in the background.
Once the server is running, you can begin your conversation with Open Interpreter.
Note: Local mode sets your
context_window
to 3000, and yourmax_tokens
to 1000. If your model has different requirements, set these parameters manually (see below).
Our Python package gives you more control over each setting. To replicate and connect to LM Studio, use these settings:
from interpreter import interpreter
interpreter.offline = True # Disables online features like Open Procedures
interpreter.llm.model = "openai/x" # Tells OI to send messages in OpenAI's format
interpreter.llm.api_key = "fake_key" # LiteLLM, which we use to talk to LM Studio, requires this
interpreter.llm.api_base = "http://localhost:1234/v1" # Point this at any OpenAI compatible server
interpreter.chat()
You can modify the max_tokens
and context_window
(in tokens) of locally running models.
For local mode, smaller context windows will use less RAM, so we recommend trying a much shorter window (~1000) if it's failing / if it's slow. Make sure max_tokens
is less than context_window
.
interpreter --local --max_tokens 1000 --context_window 3000
To help you inspect Open Interpreter we have a --verbose
mode for debugging.
You can activate verbose mode by using its flag (interpreter --verbose
), or mid-chat:
$ interpreter
...
> %verbose true <- Turns on verbose mode
> %verbose false <- Turns off verbose mode
In the interactive mode, you can use the below commands to enhance your experience. Here's a list of available commands:
Available Commands:
%verbose [true/false]
: Toggle verbose mode. Without arguments or with true
it
enters verbose mode. With false
it exits verbose mode.%reset
: Resets the current session's conversation.%undo
: Removes the previous user message and the AI's response from the message history.%tokens [prompt]
: (Experimental) Calculate the tokens that will be sent with the next prompt as context and estimate their cost. Optionally calculate the tokens and estimated cost of a prompt
if one is provided. Relies on LiteLLM's cost_per_token()
method for estimated costs.%help
: Show the help message.Open Interpreter allows you to set default behaviors using yaml
files.
This provides a flexible way to configure the interpreter without changing command-line arguments every time.
Run the following command to open the profiles directory:
interpreter --profiles
You can add yaml
files there. The default profile is named default.yaml
.
Open Interpreter supports multiple yaml
files, allowing you to easily switch between configurations:
interpreter --profile my_profile.yaml
The generator update enables Open Interpreter to be controlled via HTTP REST endpoints:
# server.py
from fastapi import FastAPI
from fastapi.responses import StreamingResponse
from interpreter import interpreter
app = FastAPI()
@app.get("/chat")
def chat_endpoint(message: str):
def event_stream():
for result in interpreter.chat(message, stream=True):
yield f"data: {result}\n\n"
return StreamingResponse(event_stream(), media_type="text/event-stream")
@app.get("/history")
def history_endpoint():
return interpreter.messages
pip install fastapi uvicorn
uvicorn server:app --reload
You can also start a server identical to the one above by simply running interpreter.server()
.
The step-by-step guide for installing Open Interpreter on your Android device can be found in the open-interpreter-termux repo.
Since generated code is executed in your local environment, it can interact with your files and system settings, potentially leading to unexpected outcomes like data loss or security risks.
⚠️ Open Interpreter will ask for user confirmation before executing code.
You can run interpreter -y
or set interpreter.auto_run = True
to bypass this confirmation, in which case:
There is experimental support for a safe mode to help mitigate some risks.
Open Interpreter equips a function-calling language model with an exec()
function, which accepts a language
(like "Python" or "JavaScript") and code
to run.
We then stream the model's messages, code, and your system's outputs to the terminal as Markdown.
The full documentation is accessible on-the-go without the need for an internet connection.
Node is a pre-requisite:
Install Mintlify:
npm i -g mintlify@latest
Change into the docs directory and run the appropriate command:
# Assuming you're at the project's root directory
cd ./docs
# Run the documentation server
mintlify dev
A new browser window should open. The documentation will be available at http://localhost:3000 as long as the documentation server is running.
Thank you for your interest in contributing! We welcome involvement from the community.
Please see our contributing guidelines for more details on how to get involved.
Visit our roadmap to preview the future of Open Interpreter.
Note: This software is not affiliated with OpenAI.
Having access to a junior programmer working at the speed of your fingertips ... can make new workflows effortless and efficient, as well as open the benefits of programming to new audiences.
— OpenAI's Code Interpreter Release