PDAL / python

PDAL's Python Support
Other
115 stars 34 forks source link

================================================================================ PDAL

PDAL Python support allows you to process data with PDAL into Numpy arrays. It provides a PDAL extension module to control Python interaction with PDAL. Additionally, you can use it to fetch schema and metadata_ from PDAL operations.

Installation

Note The PDAL Python bindings require the PDAL base library installed. Source code can be found at https://pdal.io and GitHub <https://github.com/PDAL/PDAL>__.

PyPI ................................................................................

PDAL Python support is installable via PyPI:

.. code-block::

pip install PDAL

GitHub ................................................................................

The repository for PDAL's Python extension is available at https://github.com/PDAL/python

Python support released independently from PDAL itself as of PDAL 1.7.

Usage

Simple ................................................................................

Given the following pipeline, which simply reads an ASPRS LAS_ file and sorts it by the X dimension:

.. _ASPRS LAS: https://www.asprs.org/committee-general/laser-las-file-format-exchange-activities.html

.. code-block:: python

json = """
{
  "pipeline": [
    "1.2-with-color.las",
    {
        "type": "filters.sort",
        "dimension": "X"
    }
  ]
}"""

import pdal
pipeline = pdal.Pipeline(json)
count = pipeline.execute()
arrays = pipeline.arrays
metadata = pipeline.metadata
log = pipeline.log

Programmatic Pipeline Construction ................................................................................

The previous example specified the pipeline as a JSON string. Alternatively, a pipeline can be constructed by creating Stage instances and piping them together. For example, the previous pipeline can be specified as:

.. code-block:: python

pipeline = pdal.Reader("1.2-with-color.las") | pdal.Filter.sort(dimension="X")

Stage Objects

.. code-block::

>>> help(pdal.Filter.head)
Help on function head in module pdal.pipeline:

head(**kwargs)
    Return N points from beginning of the point cloud.

    user_data: User JSON
    log: Debug output filename
    option_file: File from which to read additional options
    where: Expression describing points to be passed to this filter
    where_merge='auto': If 'where' option is set, describes how skipped points should be merged with kept points in standard mode.
    count='10': Number of points to return from beginning.  If 'invert' is true, number of points to drop from the beginning.
    invert='false': If true, 'count' specifies the number of points to skip from the beginning.

Pipeline Objects

A pdal.Pipeline instance can be created from:

Every application of the pipe operator creates a new Pipeline instance. To update an existing Pipeline use the respective in-place pipe operator (|=):

.. code-block:: python

# update pipeline in-place
pipeline = pdal.Pipeline()
pipeline |= stage
pipeline |= pipeline2

Reading using Numpy Arrays ................................................................................

The following more complex scenario demonstrates the full cycling between PDAL and Python:

.. code-block:: python

import pdal

data = "https://github.com/PDAL/PDAL/blob/master/test/data/las/1.2-with-color.las?raw=true"

pipeline = pdal.Reader.las(filename=data).pipeline()
print(pipeline.execute())  # 1065 points

# Get the data from the first array
# [array([(637012.24, 849028.31, 431.66, 143, 1,
# 1, 1, 0, 1,  -9., 132, 7326, 245380.78254963,  68,  77,  88),
# dtype=[('X', '<f8'), ('Y', '<f8'), ('Z', '<f8'), ('Intensity', '<u2'),
# ('ReturnNumber', 'u1'), ('NumberOfReturns', 'u1'), ('ScanDirectionFlag', 'u1'),
# ('EdgeOfFlightLine', 'u1'), ('Classification', 'u1'), ('ScanAngleRank', '<f4'),
# ('UserData', 'u1'), ('PointSourceId', '<u2'),
# ('GpsTime', '<f8'), ('Red', '<u2'), ('Green', '<u2'), ('Blue', '<u2')])
arr = pipeline.arrays[0]

# Filter out entries that have intensity < 50
intensity = arr[arr["Intensity"] > 30]
print(len(intensity))  # 704 points

# Now use pdal to clamp points that have intensity 100 <= v < 300
pipeline = pdal.Filter.range(limits="Intensity[100:300)").pipeline(intensity)
print(pipeline.execute())  # 387 points
clamped = pipeline.arrays[0]

# Write our intensity data to a LAS file and a TileDB array. For TileDB it is
# recommended to use Hilbert ordering by default with geospatial point cloud data,
# which requires specifying a domain extent. This can be determined automatically
# from a stats filter that computes statistics about each dimension (min, max, etc.).
pipeline = pdal.Writer.las(
    filename="clamped.las",
    offset_x="auto",
    offset_y="auto",
    offset_z="auto",
    scale_x=0.01,
    scale_y=0.01,
    scale_z=0.01,
).pipeline(clamped)
pipeline |= pdal.Filter.stats() | pdal.Writer.tiledb(array_name="clamped")
print(pipeline.execute())  # 387 points

# Dump the TileDB array schema
import tiledb
with tiledb.open("clamped") as a:
    print(a.schema)

Executing Streamable Pipelines ................................................................................ Streamable pipelines (pipelines that consist exclusively of streamable PDAL stages) can be executed in streaming mode via Pipeline.iterator(). This returns an iterator object that yields Numpy arrays of up to chunk_size size (default=10000) at a time.

.. code-block:: python

import pdal
pipeline = pdal.Reader("test/data/autzen-utm.las") | pdal.Filter.range(limits="Intensity[80:120)")
for array in pipeline.iterator(chunk_size=500):
    print(len(array))
# or to concatenate all arrays into one
# full_array = np.concatenate(list(pipeline))

Pipeline.iterator() also takes an optional prefetch parameter (default=0) to allow prefetching up to to this number of arrays in parallel and buffering them until they are yielded to the caller.

If you just want to execute a streamable pipeline in streaming mode and don't need to access the data points (typically when the pipeline has Writer stage(s)), you can use the Pipeline.execute_streaming(chunk_size) method instead. This is functionally equivalent to sum(map(len, pipeline.iterator(chunk_size))) but more efficient as it avoids allocating and filling any arrays in memory.

Accessing Mesh Data ................................................................................

Some PDAL stages (for instance filters.delaunay) create TIN type mesh data.

This data can be accessed in Python using the Pipeline.meshes property, which returns a numpy.ndarray of shape (1,n) where n is the number of Triangles in the mesh.

If the PointView contains no mesh data, then n = 0.

Each Triangle is a tuple (A,B,C) where A, B and C are indices into the PointView identifying the point that is the vertex for the Triangle.

Meshio Integration ................................................................................

The meshes property provides the face data but is not easy to use as a mesh. Therefore, we have provided optional Integration into the Meshio <https://github.com/nschloe/meshio>__ library.

The pdal.Pipeline class provides the get_meshio(idx: int) -> meshio.Mesh method. This method creates a Mesh object from the PointView array and mesh properties.

.. note:: The meshio integration requires that meshio is installed (e.g. pip install meshio). If it is not, then the method fails with an informative RuntimeError.

Simple use of the functionality could be as follows:

.. code-block:: python

import pdal

...
pl = pdal.Pipeline(pipeline)
pl.execute()

mesh = pl.get_meshio(0)
mesh.write('test.obj')

Advanced Mesh Use Case ................................................................................

USE-CASE : Take a LiDAR map, create a mesh from the ground points, split into tiles and store the tiles in PostGIS.

.. note:: Like Pipeline.arrays, Pipeline.meshes returns a list of numpy.ndarray to provide for the case where the output from a Pipeline is multiple PointViews

(example using 1.2-with-color.las and not doing the ground classification for clarity)

.. code-block:: python

import pdal
import psycopg2
import io

pl = (
    pdal.Reader(".../python/test/data/1.2-with-color.las")
    | pdal.Filter.splitter(length=1000)
    | pdal.Filter.delaunay()
)
pl.execute()

conn = psycopg(%CONNNECTION_STRING%)
buffer = io.StringIO

for idx in range(len(pl.meshes)):
    m =  pl.get_meshio(idx)
    if m:
        m.write(buffer,  file_format = "wkt")
        with conn.cursor() as curr:
          curr.execute(
              "INSERT INTO %table-name% (mesh) VALUES (ST_GeomFromEWKT(%(ewkt)s)",
              { "ewkt": buffer.getvalue()}
          )

conn.commit()
conn.close()
buffer.close()

.. Numpy: http://www.numpy.org/ .. schema: http://www.pdal.io/dimensions.html .. metadata: http://www.pdal.io/development/metadata.html .. TileDB: https://tiledb.com/ .. TileDB-PDAL integration: https://docs.tiledb.com/geospatial/pdal .. TileDB writer plugin: https://pdal.io/stages/writers.tiledb.html

.. image:: https://github.com/PDAL/python/workflows/Build/badge.svg :target: https://github.com/PDAL/python/actions?query=workflow%3ABuild

Requirements